URL matrix parameters vs. request parameters

本文探讨了在REST API设计中参数放置的最佳实践,包括URL参数与矩阵参数的选择与使用场景,帮助开发者理解何时采用何种方式传递参数更为合适。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import os os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.utils.data import DataLoader, random_split from torchvision import datasets, transforms import matplotlib.pyplot as plt import numpy as np import random from tqdm import tqdm import platform # ===== 中文字体支持设置 ===== import matplotlib as mpl import matplotlib.font_manager as fm from matplotlib import rcParams # 设置中文字体支持 def set_chinese_font(): try: # 尝试使用系统字体 font_list = ['SimHei', 'Microsoft YaHei', 'KaiTi', 'SimSun', 'FangSong', 'STSong', 'STKaiti'] available_fonts = [f.name for f in fm.fontManager.ttflist] # 查找系统支持的中文字体 chinese_font = None for font_name in font_list: if any(font_name in f for f in available_fonts): chinese_font = font_name break # 如果找到中文字体则应用 if chinese_font: rcParams['font.sans-serif'] = [chinese_font] rcParams['axes.unicode_minus'] = False # 解决负号显示问题 print(f"Set Chinese font: {chinese_font}") else: # 尝试从网络下载中文字体 try: import os from urllib.request import urlretrieve font_path = "NotoSansCJK-Regular.ttc" if not os.path.exists(font_path): print("Downloading Chinese font...") urlretrieve("https://github.com/googlefonts/noto-cjk/raw/main/Sans/OTF/Chinese/NotoSansCJK-Regular.ttc", font_path) fm.fontManager.addfont(font_path) rcParams['font.sans-serif'] = ['Noto Sans CJK SC'] rcParams['axes.unicode_minus'] = False print("Set downloaded Chinese font") except Exception as e: print(f"Failed to set Chinese font: {str(e)}") print("Chinese display may be incorrect") except Exception as e: print(f"Font setting error: {str(e)}") # 改进的参照化模态感知网络模型,增加正则化防止过拟合 class ImprovedRMAN(nn.Module): def __init__(self, num_classes=9, dropout_rate=0.3): super(ImprovedRMAN, self).__init__() self.num_classes = num_classes self.dropout_rate = dropout_rate # 特征提取器 - 增加了Dropout和调整了通道数 self.features = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1), # 减少初始通道数 nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Dropout2d(p=dropout_rate/2), # 卷积后的Dropout nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), # 减少通道数 nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Dropout2d(p=dropout_rate/2), # 卷积后的Dropout ) # 动态计算全连接层输入维度 self.fc_input_dim = self._calculate_fc_input_dim() # 模态感知模块 - 增加Dropout self.modality_aware = nn.Sequential( nn.Linear(self.fc_input_dim, 128), # 减少隐藏层大小 nn.BatchNorm1d(128), nn.ReLU(inplace=True), nn.Dropout(p=dropout_rate), # 全连接后的Dropout ) # 参照向量(每个类别一个) self.reference_vectors = nn.Parameter(torch.randn(num_classes, 128)) # 分类器 self.classifier = nn.Linear(128, num_classes) # 初始化权重 self._initialize_weights() def _initialize_weights(self): # 权重初始化以提高稳定性 for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def _calculate_fc_input_dim(self): x = torch.randn(1, 3, 28, 28) x = self.features(x) return x.view(1, -1).size(1) def forward(self, x): # 特征提取 x = self.features(x) x = x.view(x.size(0), -1) # 模态感知特征 features = self.modality_aware(x) # 参照感知计算 # 计算特征与每个参照向量的相似度 similarities = F.cosine_similarity( features.unsqueeze(1), self.reference_vectors.unsqueeze(0), dim=2 ) # 使用相似度加权参照向量 attention_weights = F.softmax(similarities, dim=1) weighted_ref = torch.sum( attention_weights.unsqueeze(2) * self.reference_vectors.unsqueeze(0), dim=1 ) # 特征增强:原始特征 + 加权参照向量 enhanced_features = features + weighted_ref # 分类 out = self.classifier(enhanced_features) return out # 可视化混淆矩阵以分析模型性能 def plot_confusion_matrix(all_labels, all_preds, class_names): from sklearn.metrics import confusion_matrix, classification_report import seaborn as sns cm = confusion_matrix(all_labels, all_preds) plt.figure(figsize=(10, 8)) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=class_names, yticklabels=class_names) plt.xlabel('Predicted') plt.ylabel('True') plt.title('Confusion Matrix') plt.tight_layout() plt.savefig('confusion_matrix.png') plt.show() # 打印分类报告 print("\nClassification Report:") print(classification_report(all_labels, all_preds, target_names=class_names)) # 可视化随机预测 def visualize_predictions(model, dataset, mean, std, num_samples=5): class_names = dataset.dataset.classes indices = random.sample(range(len(dataset)), num_samples) model.eval() plt.figure(figsize=(15, 10)) for i, idx in enumerate(indices): image, true_label = dataset[idx] image_batch = image.unsqueeze(0).to(next(model.parameters()).device) with torch.no_grad(): output = model(image_batch) _, pred_label_idx = torch.max(output, 1) pred_label = pred_label_idx.item() # 反标准化 image_np = image.permute(1, 2, 0).cpu().numpy() image_np = image_np * std.cpu().numpy() + mean.cpu().numpy() image_np = np.clip(image_np, 0, 1) plt.subplot(1, num_samples, i+1) plt.imshow(image_np) plt.title(f"真实: {class_names[true_label]}\n预测: {class_names[pred_label]}") plt.axis('off') plt.tight_layout() plt.savefig('predictions.png') plt.show() # 可视化训练过程 def plot_training_history(train_losses, test_losses, train_accs, test_accs): epochs = range(1, len(train_losses)+1) # 创建1行2列的子图布局 plt.figure(figsize=(18, 6)) # 左子图:损失曲线 plt.subplot(1, 2, 1) plt.plot(epochs, train_losses, 'b-', linewidth=2, label='训练损失') plt.plot(epochs, test_losses, 'r-', linewidth=2, label='验证损失') plt.title('训练与验证损失', fontsize=16) plt.xlabel('轮次', fontsize=12) plt.ylabel('损失', fontsize=12) plt.grid(True, linestyle='--', alpha=0.7) plt.legend(fontsize=12) # 添加每个点的数值标签 for i, (tl, vl) in enumerate(zip(train_losses, test_losses)): if i % 3 == 0 or i == len(train_losses)-1: # 每3个点或最后一个点添加标签 plt.annotate(f'{tl:.4f}', xy=(i+1, tl), xytext=(i+1, tl+0.01), fontsize=8, ha='center') plt.annotate(f'{vl:.4f}', xy=(i+1, vl), xytext=(i+1, vl+0.01), fontsize=8, ha='center') # 右子图:准确率曲线 plt.subplot(1, 2, 2) plt.plot(epochs, train_accs, 'b-', linewidth=2, label='训练准确率') plt.plot(epochs, test_accs, 'r-', linewidth=2, label='验证准确率') plt.title('训练与验证准确率', fontsize=16) plt.xlabel('轮次', fontsize=12) plt.ylabel('准确率 (%)', fontsize=12) plt.grid(True, linestyle='--', alpha=0.7) plt.legend(fontsize=12) # 添加每个点的数值标签 for i, (ta, va) in enumerate(zip(train_accs, test_accs)): if i % 3 == 0 or i == len(train_accs)-1: # 每3个点或最后一个点添加标签 plt.annotate(f'{ta:.2f}%', xy=(i+1, ta), xytext=(i+1, ta+1), fontsize=8, ha='center') plt.annotate(f'{va:.2f}%', xy=(i+1, va), xytext=(i+1, va+1), fontsize=8, ha='center') plt.tight_layout() plt.savefig('training_history.png', dpi=300, bbox_inches='tight') plt.show() # 主函数 def main(): # 调用字体设置函数 set_chinese_font() # 数据目录 data_dir = r'D:\Codes\新' # 确定操作系统,设置合适的num_workers system = platform.system() if system == 'Windows': num_workers = 0 # Windows系统上使用0避免多进程问题 else: num_workers = 2 # 其他系统可以使用多进程加速 # 加载数据集计算均值和标准差 full_dataset = datasets.ImageFolder(root=data_dir, transform=transforms.ToTensor()) train_size = int(0.8 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, _ = random_split(full_dataset, [train_size, test_size]) train_loader_for_stats = DataLoader(train_dataset, batch_size=len(train_dataset), shuffle=False, num_workers=num_workers) data, _ = next(iter(train_loader_for_stats)) mean = data.mean(dim=(0, 2, 3)) std = data.std(dim=(0, 2, 3)) # 增强数据增强以减少过拟合 train_transform = transforms.Compose([ transforms.Resize((32, 32)), # 稍大尺寸以便更多裁剪 transforms.RandomCrop(28, padding=4), transforms.RandomHorizontalFlip(p=0.5), transforms.RandomVerticalFlip(p=0.2), # 增加垂直翻转 transforms.RandomRotation(20), # 增加旋转角度 transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.15), # 增强颜色抖动 transforms.RandomAffine(degrees=0, translate=(0.15, 0.15), scale=(0.85, 1.15)), transforms.RandomGrayscale(p=0.1), # 增加灰度转换 transforms.ToTensor(), transforms.Normalize(mean=mean, std=std), transforms.RandomErasing(p=0.2, scale=(0.02, 0.25)) # 增加随机擦除 ]) test_transform = transforms.Compose([ transforms.Resize((28, 28)), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) # 创建数据集 full_dataset = datasets.ImageFolder(root=data_dir, transform=train_transform) train_size = int(0.8 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = random_split(full_dataset, [train_size, test_size]) test_dataset.dataset.transform = test_transform # 数据加载器 batch_size = 64 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) # 初始化模型与设备 model = ImprovedRMAN(num_classes=9, dropout_rate=0.4) # 适当的dropout率 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) print(f"Using device: {device}") # 损失函数与优化器 - 增加L2正则化 criterion = nn.CrossEntropyLoss() # 增加weight_decay增强正则化 optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=5e-4) # 使用更智能的学习率调度器 scheduler = ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=3) # 训练记录 train_losses = [] train_accuracies = [] test_losses = [] test_accuracies = [] # 训练循环 - 改为20轮 num_epochs = 30 best_accuracy = 0.0 patience = 6 # 增加早停耐心值 early_stopping_counter = 0 # 创建主进度条 main_pbar = tqdm(range(num_epochs), desc="Overall Training", position=0, leave=True) for epoch in main_pbar: model.train() running_loss = 0.0 correct_train = 0 total_train = 0 # 创建训练批次进度条 train_pbar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs} [Training]", leave=False, position=1) for images, labels in train_pbar: images, labels = images.to(device), labels.to(device) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播 optimizer.zero_grad() loss.backward() # 添加梯度裁剪防止梯度爆炸 torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() running_loss += loss.item() # 计算准确率 _, predicted = torch.max(outputs.data, 1) total_train += labels.size(0) correct_train += (predicted == labels).sum().item() # 更新训练进度条信息 current_loss = loss.item() current_acc = 100 * (predicted == labels).sum().item() / labels.size(0) train_pbar.set_postfix(loss=f"{current_loss:.4f}", acc=f"{current_acc:.2f}%") # 关闭训练批次进度条 train_pbar.close() # 计算训练指标 avg_train_loss = running_loss / len(train_loader) train_accuracy = 100 * correct_train / total_train train_losses.append(avg_train_loss) train_accuracies.append(train_accuracy) # 更新主进度条信息 main_pbar.set_postfix( train_loss=f"{avg_train_loss:.4f}", train_acc=f"{train_accuracy:.2f}%" ) # 验证 model.eval() test_loss = 0.0 correct_test = 0 total_test = 0 # 创建验证进度条 test_pbar = tqdm(test_loader, desc=f"Epoch {epoch+1}/{num_epochs} [Validation]", leave=False, position=1) with torch.no_grad(): for images, labels in test_pbar: images, labels = images.to(device), labels.to(device) outputs = model(images) loss = criterion(outputs, labels) test_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total_test += labels.size(0) correct_test += (predicted == labels).sum().item() # 更新验证进度条信息 current_test_acc = 100 * (predicted == labels).sum().item() / labels.size(0) test_pbar.set_postfix(acc=f"{current_test_acc:.2f}%") # 关闭验证进度条 test_pbar.close() avg_test_loss = test_loss / len(test_loader) test_accuracy = 100 * correct_test / total_test test_losses.append(avg_test_loss) test_accuracies.append(test_accuracy) # 更新主进度条信息 main_pbar.set_postfix( train_loss=f"{avg_train_loss:.4f}", train_acc=f"{train_accuracy:.2f}%", test_loss=f"{avg_test_loss:.4f}", test_acc=f"{test_accuracy:.2f}%" ) # 更新学习率(基于验证准确率) scheduler.step(test_accuracy) # 早停机制 if test_accuracy > best_accuracy: best_accuracy = test_accuracy early_stopping_counter = 0 torch.save(model.state_dict(), 'best_improved_rman_model.pth') tqdm.write(f'Epoch [{epoch+1}/{num_epochs}]: New best model saved with accuracy: {best_accuracy:.2f}%') else: early_stopping_counter += 1 if early_stopping_counter >= patience: tqdm.write(f'Epoch [{epoch+1}/{num_epochs}]: Early stopping after {patience} epochs without improvement') break # 关闭主进度条 main_pbar.close() # 加载最佳模型 model.load_state_dict(torch.load('best_improved_rman_model.pth')) model.eval() # 最终评估 correct = 0 total = 0 all_labels = [] all_preds = [] # 创建最终评估进度条 eval_pbar = tqdm(test_loader, desc="Final Evaluation", position=0, leave=True) with torch.no_grad(): for images, labels in eval_pbar: images, labels = images.to(device), labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() all_labels.extend(labels.cpu().numpy()) all_preds.extend(predicted.cpu().numpy()) # 更新评估进度条信息 current_acc = 100 * (predicted == labels).sum().item() / labels.size(0) eval_pbar.set_postfix(acc=f"{current_acc:.2f}%") # 关闭评估进度条 eval_pbar.close() accuracy = 100 * correct / total print(f'Final Test Accuracy: {accuracy:.2f}%') # 执行可视化和保存模型 class_names = full_dataset.classes visualize_predictions(model, test_dataset, mean, std, num_samples=5) plot_training_history(train_losses, test_losses, train_accuracies, test_accuracies) plot_confusion_matrix(all_labels, all_preds, class_names) torch.save(model.state_dict(), 'final_improved_rman_model.pth') print("模型已保存为 'final_improved_rman_model.pth'") if __name__ == '__main__': # 在Windows上使用多进程时需要的保护措施 import multiprocessing multiprocessing.freeze_support() main() 优化此模型,使得测试准确率达到97.5%左右
最新发布
08-16
36 elements are distorted. Either the isoparametric angles are out of the suggested limits or the triangular or tetrahedral quality measure is bad. The elements have been identified in element set WarnElemDistorted. OUTPUT AT EXACT, PREDEFINED TIME POINTS WAS REQUESTED IN THIS STEP. IN ORDER TO WRITE OUTPUT AT EXACT TIME POINTS SPECIFIED, Abaqus MIGHT USE TIME INCREMENTS SMALLER THAN THE MINIMUM TIME INCREMENT ALLOWED IN THE STEP. IN ADDITION, THE NUMBER OF INCREMENTS REQUIRED TO COMPLETE THE STEP WILL IN GENERAL INCREASE. Output request v1 is not available for this type of analysis There are 3 unconnected regions in the model. Solver problem. Numerical singularity when processing node P1TEST-2-1.26 D.O.F. 1 ratio = 1.51839E+12. Solver problem. Numerical singularity when processing node P1TEST-2-1.26 D.O.F. 3 ratio = 475.054E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 1 ratio = 35.1420E+12 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 2 ratio = 13.4128E+12 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 3 ratio = 505.827E+12 . The system matrix has 23545 negative eigenvalues. Solver problem. Numerical singularity when processing node P1TEST-2-1.7740 D.O.F. 3 ratio = 11.7175E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.7796 D.O.F. 3 ratio = 6.59077E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.8404 D.O.F. 3 ratio = 97.0262E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.8405 D.O.F. 3 ratio = 9.91480E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.8985 D.O.F. 3 ratio = 59.2946E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6684 D.O.F. 3 ratio = 39.0046E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6230 D.O.F. 3 ratio = 8.48070E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.6287 D.O.F. 3 ratio = 35.8394E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6802 D.O.F. 3 ratio = 30.7460E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6803 D.O.F. 3 ratio = 7.32544E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.6891 D.O.F. 3 ratio = 12.6899E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6892 D.O.F. 3 ratio = 13.1385E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.7441 D.O.F. 3 ratio = 5.43419E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.7442 D.O.F. 3 ratio = 16.5665E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.8398 D.O.F. 3 ratio = 17.9454E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.10450 D.O.F. 3 ratio = 11.3629E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.9243 D.O.F. 3 ratio = 8.34036E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.7478 D.O.F. 3 ratio = 20.6547E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.2863 D.O.F. 3 ratio = 32.3509E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.878 D.O.F. 3 ratio = 23.7521E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.2291 D.O.F. 3 ratio = 52.3054E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.7737 D.O.F. 3 ratio = 8.85549E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5072 D.O.F. 3 ratio = 16.5550E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5069 D.O.F. 3 ratio = 22.2438E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5086 D.O.F. 3 ratio = 19.5490E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5778 D.O.F. 3 ratio = 19.7793E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.4612 D.O.F. 3 ratio = 5.45237E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5074 D.O.F. 3 ratio = 49.5806E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5777 D.O.F. 3 ratio = 14.2473E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5075 D.O.F. 3 ratio = 4.96607E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5064 D.O.F. 3 ratio = 18.2234E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.4603 D.O.F. 3 ratio = 21.7391E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5070 D.O.F. 3 ratio = 14.6459E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5774 D.O.F. 3 ratio = 5.28532E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5779 D.O.F. 3 ratio = 110.232E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.4607 D.O.F. 3 ratio = 7.53169E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.3942 D.O.F. 3 ratio = 11.0816E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.4795 D.O.F. 3 ratio = 4.73811E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5404 D.O.F. 3 ratio = 14.4085E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.10493 D.O.F. 3 ratio = 6.04685E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.6902 D.O.F. 3 ratio = 17.6672E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.7482 D.O.F. 3 ratio = 18.0497E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.886 D.O.F. 3 ratio = 17.1849E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6239 D.O.F. 3 ratio = 12.2502E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.2966 D.O.F. 3 ratio = 4.70437E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.1424 D.O.F. 3 ratio = 23.6393E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.1425 D.O.F. 3 ratio = 10.6345E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.7443 D.O.F. 3 ratio = 12.7344E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.821 D.O.F. 3 ratio = 15.0514E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.680 D.O.F. 3 ratio = 6.06589E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.462 D.O.F. 3 ratio = 9.54202E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.461 D.O.F. 3 ratio = 18.2187E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.460 D.O.F. 3 ratio = 4.74393E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.157 D.O.F. 3 ratio = 48.7365E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.101 D.O.F. 3 ratio = 6.62498E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.48 D.O.F. 3 ratio = 14.5672E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.4675 D.O.F. 3 ratio = 4.87958E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5209 D.O.F. 3 ratio = 9.43404E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5886 D.O.F. 3 ratio = 26.2999E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5885 D.O.F. 3 ratio = 19.2370E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5199 D.O.F. 3 ratio = 24.6083E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5887 D.O.F. 3 ratio = 5.57688E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.4679 D.O.F. 3 ratio = 6.70264E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5217 D.O.F. 3 ratio = 66.7249E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5200 D.O.F. 3 ratio = 42.9486E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5747 D.O.F. 3 ratio = 14.7032E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.3839 D.O.F. 3 ratio = 843.681E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5698 D.O.F. 3 ratio = 5.21315E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5379 D.O.F. 3 ratio = 57.7590E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6279 D.O.F. 3 ratio = 8.43431E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.6964 D.O.F. 3 ratio = 5.63659E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.9656 D.O.F. 3 ratio = 646.432E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.745 D.O.F. 3 ratio = 16.4278E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.189 D.O.F. 3 ratio = 33.0501E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5970 D.O.F. 3 ratio = 10.5968E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5969 D.O.F. 3 ratio = 9.28691E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5264 D.O.F. 3 ratio = 5.18585E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.4640 D.O.F. 3 ratio = 5.42354E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5147 D.O.F. 3 ratio = 7.27317E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5265 D.O.F. 3 ratio = 366.833E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5858 D.O.F. 3 ratio = 13.9626E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5924 D.O.F. 3 ratio = 34.8631E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5861 D.O.F. 3 ratio = 7.67137E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5149 D.O.F. 3 ratio = 68.1263E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5857 D.O.F. 3 ratio = 13.5225E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5263 D.O.F. 3 ratio = 8.68280E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5144 D.O.F. 3 ratio = 9.98761E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.747 D.O.F. 3 ratio = 12.7017E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.8383 D.O.F. 3 ratio = 64.9370E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6649 D.O.F. 3 ratio = 7.73570E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.193 D.O.F. 3 ratio = 17.5045E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.9225 D.O.F. 3 ratio = 4.70492E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.7365 D.O.F. 3 ratio = 12.1323E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.9286 D.O.F. 3 ratio = 10.4841E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5366 D.O.F. 3 ratio = 5.40483E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.3635 D.O.F. 3 ratio = 6.93097E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.1341 D.O.F. 3 ratio = 6.11203E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.1338 D.O.F. 3 ratio = 27.1885E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.851 D.O.F. 3 ratio = 23.8949E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.627 D.O.F. 3 ratio = 18.1590E+09 . Solver problem. Numerical singularity: the maximum number of numerical singularity checks messages printed for this increment has been reached. The output of these messages is supressed until the end of the increment to avoid potentially large increases in the system time needed to complete the analysis. Excessive distortion at a total of 302 integration points in solid (continuum) elements Solver problem. Numerical singularity when processing node P1TEST-2-1.26 D.O.F. 1 ratio = 1.51839E+12. Solver problem. Numerical singularity when processing node P1TEST-2-1.26 D.O.F. 3 ratio = 475.054E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 1 ratio = 35.1420E+12 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 2 ratio = 13.4128E+12 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 3 ratio = 505.827E+12 . The system matrix has 23735 negative eigenvalues. Solver problem. Numerical singularity when processing node P1TEST-2-1.8190 D.O.F. 3 ratio = 6.40877E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.3839 D.O.F. 3 ratio = 52.0487E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5362 D.O.F. 3 ratio = 12.4431E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5363 D.O.F. 3 ratio = 10.1116E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5364 D.O.F. 3 ratio = 52.3366E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5264 D.O.F. 3 ratio = 8.30372E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5351 D.O.F. 3 ratio = 4.84013E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5456 D.O.F. 3 ratio = 11.6060E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6011 D.O.F. 3 ratio = 7.77439E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.6009 D.O.F. 3 ratio = 5.70545E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.4830 D.O.F. 3 ratio = 7.70129E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.8454 D.O.F. 3 ratio = 7.10202E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.1806 D.O.F. 3 ratio = 7.99413E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.1388 D.O.F. 3 ratio = 40.0582E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6933 D.O.F. 3 ratio = 11.0363E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.2791 D.O.F. 3 ratio = 4.54802E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.2665 D.O.F. 3 ratio = 54.5387E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.2664 D.O.F. 3 ratio = 5.69178E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.1475 D.O.F. 3 ratio = 29.8249E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6025 D.O.F. 3 ratio = 57.9842E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.2503 D.O.F. 3 ratio = 17.7218E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.1923 D.O.F. 3 ratio = 15.6029E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 1 ratio = 11.9818E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 2 ratio = 12.9509E+12 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 3 ratio = 142.872E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.4878 D.O.F. 3 ratio = 4.90865E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.2505 D.O.F. 3 ratio = 6.06260E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5069 D.O.F. 3 ratio = 5.98944E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5779 D.O.F. 3 ratio = 6.64290E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5930 D.O.F. 3 ratio = 5.06973E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5932 D.O.F. 3 ratio = 43.9842E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.9807 D.O.F. 3 ratio = 6.90718E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.95 D.O.F. 3 ratio = 5.28565E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5314 D.O.F. 3 ratio = 4.87347E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.4446 D.O.F. 3 ratio = 12.7125E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.1314 D.O.F. 3 ratio = 11.6188E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5810 D.O.F. 3 ratio = 4.76208E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.8815 D.O.F. 3 ratio = 26.0838E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.8486 D.O.F. 3 ratio = 36.4567E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6458 D.O.F. 3 ratio = 7.51568E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5886 D.O.F. 3 ratio = 5.03334E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5217 D.O.F. 3 ratio = 5.27853E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.7242 D.O.F. 3 ratio = 5.53601E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5379 D.O.F. 3 ratio = 6.24178E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.8357 D.O.F. 3 ratio = 19.1481E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.8967 D.O.F. 3 ratio = 8.27736E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.5330 D.O.F. 3 ratio = 22.2800E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.435 D.O.F. 3 ratio = 6.19020E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.8643 D.O.F. 3 ratio = 22.9472E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.6539 D.O.F. 3 ratio = 5.43487E+09. Solver problem. Numerical singularity when processing node P1TEST-2-1.7725 D.O.F. 3 ratio = 13.8887E+09 . The system matrix has 8044 negative eigenvalues. Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 1 ratio = 3.24844E+12. Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 2 ratio = 445.235E+09 . Solver problem. Numerical singularity when processing node P1TEST-2-1.5 D.O.F. 3 ratio = 190.875E+09 . The system matrix has 8189 negative eigenvalues. Solver problem. Zero pivot when processing node P1TEST-3-1.2398 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2398 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.2398 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.2395 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2395 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.2395 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.2397 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2397 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.2397 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.2394 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2394 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.2394 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.3858 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.3858 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.3858 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.3493 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.3493 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.3493 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.3128 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.3128 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.3128 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.2763 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2763 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.2763 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.2234 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2234 D.O.F. 2. Solver problem. Zero pivot when processing node P1TEST-3-1.2234 D.O.F. 3. Solver problem. Zero pivot when processing node P1TEST-3-1.2233 D.O.F. 1. Solver problem. Zero pivot when processing node P1TEST-3-1.2233 D.O.F. 2.
07-30
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值