Source
2009 Multi-University Training Contest 16 - Host by NIT
最大闭合子图:
给定带权图G(权值可正可负),求一个权和最大的点集,使得起点在该点集中的任意弧,终点也在该点集中。
解:
新增附加源点s和汇点t,从s向所有正权点引一条边,容量为权值;从所有负权点向汇点引一条边,容量为权值的相反数。求出最小割以后 , S - {最小割值}就是最大闭合子图
#ifndef __Dinic
#define __Dinic
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
const int MAXN = 3000;
const int MAXM = 550000;
const int INF = 0x3f3f3f3f;
using namespace std;
struct Edge {
int from, to, cap, flow, next;
};
Edge edge[MAXM];
int head[MAXN], edgenum, cur[MAXN];
int dist[MAXN];
bool vis[MAXN];
int N, M;
int source, sink;
void init() {
edgenum = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v, int w) {
Edge E1 = {u, v, w, 0, head[u]};
edge[edgenum] = E1;
head[u] = edgenum++;
Edge E2 = {v, u, 0, 0, head[v]};
edge[edgenum] = E2;
head[v] = edgenum++;
}
bool BFS(int s, int t) {
queue<int> Q;
memset(dist, -1, sizeof(dist));
memset(vis, false, sizeof(vis));
dist[s] = 0;
vis[s] = true;
Q.push(s);
while(!Q.empty()) {
int u = Q.front();
Q.pop();
for(int i = head[u]; i != -1; i = edge[i].next) {
Edge E = edge[i];
if(!vis[E.to] && E.cap > E.flow) {
dist[E.to] = dist[u] + 1;
vis[E.to] = true;
if(E.to == t) return true;
Q.push(E.to);
}
}
}
return false;
}
int DFS(int x, int a, int t) {
if(x == t || a == 0) return a;
int flow = 0, f;
for(int &i = cur[x]; i != -1; i = edge[i].next) {
Edge &E = edge[i];
if(dist[E.to] == dist[x] + 1 && (f = DFS(E.to, min(a, E.cap-E.flow), t)) > 0) {
edge[i].flow += f;
edge[i^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
}
int Maxflow(int s, int t) {
int flow = 0;
while(BFS(s, t))
{
memcpy(cur, head, sizeof(head));
flow += DFS(s, INF, t);
}
return flow;
}
int main() {
//freopen("in.txt", "r", stdin);
while(scanf("%d%d", &N, &M) != EOF) {
int a, b;
init();
int sum = 0;
for (int i = 1; i <= N; ++i) {
scanf("%d", &a);
if (a > 0) {
addEdge(0, i, a);
sum += a;
} else {
addEdge(i, N + 1, -a);
}
}
for (int i = 1; i <= M; ++i) {
scanf("%d%d", &a, &b);
addEdge(a, b, INF);
}
printf("%d\n", sum - Maxflow(0 , N + 1));
}
return 0;
}
#endif
|