解 :在二分图的基础上添加源点S和汇点T,然后从S向所有X集合的点连一条边,所有Y集合中的点向T连一条边,容量均为该点的权值。X结点与Y结点之间的边的容量均为无穷大。这样,对于该图中任意一个割,将割种的边对应的结点删掉就是一个符合要求的解。所以求出最小割, sum - 最小割就是答案
#ifndef __Dinic
#define __Dinic
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
#define MAXN 3000
#define MAXM 20000+10
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
struct Edge
{
int from, to, cap, flow, next;
};
Edge edge[MAXM];
int head[MAXN], edgenum, cur[MAXN];
int dist[MAXN];
bool vis[MAXN];
int N, M;
int source, sink;
int Map[60][60];
int sum;
void init()
{
edgenum = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v, int w)
{
Edge E1 = {u, v, w, 0, head[u]};
edge[edgenum] = E1;
head[u] = edgenum++;
Edge E2 = {v, u, 0, 0, head[v]};
edge[edgenum] = E2;
head[v] = edgenum++;
}
void getMap()
{
sum = 0;
for(int i = 1; i <= N; i++)
{
for(int j = 1; j <= M; j++)
scanf("%d", &Map[i][j]), sum += Map[i][j];
}
source = 0, sink = 2501;
for(int i = 1; i <= N; i++)
{
for(int j = 1; j <= M; j++)
{
if((i + j) & 1)//T集 连汇点 权值为该点的权值
addEdge((i-1)*M + j, sink, Map[i][j]);
else
{
addEdge(source, (i-1)*M + j, Map[i][j]);//源点 连S集权值为该点的权值
if(j > 1)
addEdge((i-1)*M + j, (i-1)*M + j - 1, INF);//S集连T集
if(j < M)
addEdge((i-1)*M + j, (i-1)*M + j + 1, INF);
if(i > 1)
addEdge((i-1)*M + j, (i-2)*M + j, INF);
if(i < N)
addEdge((i-1)*M + j, i*M + j, INF);
}
}
}
}
bool BFS(int s, int t)
{
queue<int> Q;
memset(dist, -1, sizeof(dist));
memset(vis, false, sizeof(vis));
dist[s] = 0;
vis[s] = true;
Q.push(s);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
for(int i = head[u]; i != -1; i = edge[i].next)
{
Edge E = edge[i];
if(!vis[E.to] && E.cap > E.flow)
{
dist[E.to] = dist[u] + 1;
vis[E.to] = true;
if(E.to == t) return true;
Q.push(E.to);
}
}
}
return false;
}
int DFS(int x, int a, int t)
{
if(x == t || a == 0) return a;
int flow = 0, f;
for(int &i = cur[x]; i != -1; i = edge[i].next)
{
Edge &E = edge[i];
if(dist[E.to] == dist[x] + 1 && (f = DFS(E.to, min(a, E.cap-E.flow), t)) > 0)
{
edge[i].flow += f;
edge[i^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
}
int Maxflow(int s, int t)
{
int flow = 0;
while(BFS(s, t))
{
memcpy(cur, head, sizeof(head));
flow += DFS(s, INF, t);
}
return flow;
}
int main()
{
while(scanf("%d%d", &N, &M) != EOF)
{
init();
getMap();
printf("%d\n", sum - Maxflow(source, sink));
}
return 0;
}
#endif