tensorflow rnn

  1. tf.nn.rnn_cell.MultiRNNCell

新版
tf.contrib.rnn.MultiRNNCell  
tf.nn.rnn_cell.MultiRNNCell
state_is_tuple:true,状态Ct和ht就是分开记录,放在一个tuple中,接受和返回的states是n-tuples,其中n=len(cells)


# encoding:utf-8
import tensorflow as tf

batch_size=10
depth=128

inputs=tf.Variable(tf.random_normal([batch_size,depth]))

previous_state0=(tf.random_normal([batch_size,100]),tf.random_normal([batch_size,100]))
previous_state1=(tf.random_normal([batch_size,200]),tf.random_normal([batch_size,200]))
previous_state2=(tf.random_normal([batch_size,300]),tf.random_normal([batch_size,300]))

num_units=[100,200,300]
print(inputs)

cells=[tf.nn.rnn_cell.BasicLSTMCell(num_unit) for num_unit in num_units]
mul_cells=tf.nn.rnn_cell.MultiRNNCell(cells)

outputs,states=mul_cells(inputs,(previous_state0,previous_state1,previous_state2))

print(outputs.shape) #(10, 300)
print(states[0]) #第一层LSTM
print(states[1]) #第二层LSTM
print(states[2]) ##第三层LSTM
print(states[0].h.shape) #第一层LSTM的h状态,(10, 100)
print(states[0].c.shape) #第一层LSTM的c状态,(10, 100)
print(states[1].h.shape) #第二层LSTM的h状态,(10, 200)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值