待完善
–—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—-——-
–—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—-——-
系列推荐:
【监督学习】1:KNN算法实现手写数字识别的三种方法
–—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—-——-
【无监督学习】1:K-means算法原理介绍,以及代码实现
【无监督学习】2:DBSCAN算法原理介绍,以及代码实现
【无监督学习】3:Density Peaks聚类算法(局部密度聚类)
–—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—-——-
【深度学习】1:感知器原理,以及多层感知器解决异或问题
【深度学习】2:BP神经网络的原理,以及异或问题的解决
【深度学习】3:BP神经网络识别MNIST数据集
【深度学习】4:BP神经网络+sklearn实现数字识别
【深度学习】5:CNN卷积神经网络原理、MNIST数据集识别
【深度学习】8:CNN卷积神经网络识别sklearn数据集(附源码)
【深度学习】6:RNN递归神经网络原理、MNIST数据集识别
【深度学习】7:Hopfield神经网络(DHNN)原理介绍
–—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—-——-
TensorFlow框架简单介绍
–—-—-—-—-—-—-—-—-—-—-—-—–—-—-—-—-—-—-—-——-—-—-—-—-—-—-—-—-—-—-—-—-—-——-
本文系统介绍了机器学习领域的核心算法,包括监督学习中的KNN、深度学习中的BP神经网络及CNN等,并对无监督学习中的K-means、DBSCAN进行了详细讲解。此外,还提供了多种算法的实际代码实现案例。
1957

被折叠的 条评论
为什么被折叠?



