Hopfield神经网络与受限波尔兹曼机

深度学习与Hopfield神经网络:原理与应用
本文介绍了神经网络的两大类,包括多层神经网络和相互连接型网络,重点讨论了Hopfield神经网络的结构和工作原理,如全互联网络、二值神经网络和联想记忆功能。同时提到了深度学习的发展历程,如自适应线性单元、卷积神经网络和分布式自编码器等。此外,还对比了Hopfield网络与波尔兹曼机的异同,并简要提及了受限玻尔兹曼机的概念。

神经网络可分为两大类:

  • 一类是多层神经网络、卷积神经网络:可用于模式识别
  • 另一类是相互连接型网络:可通过联想记忆去除输入数据中的噪声。

深度学习目录:

  1. 自适应线性单元 (Widrow and Hoff, 1960)
  2. 神经认知机 (Fukushima, 1980)
  3. GPU-加速 卷积网络 (Chellapilla et al., 2006)
  4. 深度玻尔兹曼机 (Salakhutdinov and Hinton, 2009a)
  5. 无监督卷积网络 (Jarrett et al., 2009b)
  6. GPU-加速 多层感知机 (Ciresan et al., 2010)
  7. 分布式自编码器 (Le et al., 2012)
  8. Multi-GPU 卷积网络 (Krizhevsky et al., 2012a)
  9. COTS HPC 无监督卷积网络 (Coates et al., 2013)
  10. GoogLeNet (Szegedy et al., 2014a)

Hopfield神经网络 HNN(Hopfield Neural Network)

1982年Hopfield 提出了Hopfield神经网络,是最典型的相互连接型神经网络。

首先我们来看看脑部神经元结构图
在这里插入图片描述
生物神经元和人工神经元的对照关系

在这里插入图片描述
Hopfield神经网络是一种递归神经网络,从输出到输入均有反馈连接,每一个神经元跟所有其他神经元相互连接,又称为全互联网络
我们根据如上形式,将所有神经元之间两两连接,形成了全互联网络

在这里插入图片描述
Hopfield最早提出的网络是二值神经网络,各神经元的激励函数为阶跃函数或双极值函数,神经元的输入、输出只取 ( 0 , 1 ) {(0,1)} (01) 或者 ( − 1 , 1 ) {( -1,1)} (11) ,所以也称为离散型Hopfield神经网络DHNN(Discrete Hopfiled Neural Network)

离散Hopfield神经网络DHNN是一个单层网络,有n个神经元节点,每个神经元的输出均接到其它神经元的输入。各节点没有自反馈。每个节点都可处于一种可能的状态(1或-1),即当该神经元所受的刺激超过其阀值时,神经元就处于一种状态(比如1),否则神经元就始终处于另一状态(比如-1)。

构建Hopfield神经网络

首先,构建Hopfield神经网络需要提供要求记忆的二进制网络,如:

a=np.array([[0,0,1,1,0,0],
            [0,0,1,1,0,0],
            [1,1,1,1,1,1],
            [1,1,1,1,1,1],
            [0,0,1,1,0,0],
            [0,0,1,1,0,0]])

在这里插入图片描述

设置神经网络的网络权值

因为网络共有 6 ∗ 6 = 36 6*6=36 66=36个结点。故神经网络连接需要 35 ∗ 35 35 * 35 3535个(自身与自身不连接)。

我们首先将二维图像展开成为一层

array_a=a.flatten()

在这里插入图片描述

其次,设置连接权值。

我们已知Hopfield神经网络为二值神经网络,值为0或1。

设:
当 a [ i ] 为 0 , a [ j ] 为 1 时 , 权值 w i j 为 − 1 当 a [ i ] 为 0 , a [ j ] 为 0 时 , 权值 w i j 为 1 且 w j i = w i j 即:俩结点值相同权值为 1 ,结点不同权值为 0 当 a[i]为0,a[j]为1时,权值w_{ij}为-1\\ \quad\\ 当 a[i]为0,a[j]为0时,权值w_{ij}为1\\ \quad\\ 且w_{ji} = w_{ij}\\ 即:俩结点值相同权值为1,结点不同权值为0 a[i]0a[j]1,权值wij1a[i]0a[j]0,权值wij1wji=w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Elsa的迷弟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值