开发环境上是否能运行MapReduce(使用自带的hadoop-examples.jar):
hadoop jar ./hadoop-examples.jar pi 10 10000
开发前提:
一般我们写的mapreduce主程序放在客户端机器上,执行任务时是在集群机器上,所以要将变量从主程序传递到我们自己写的map或者reduce函数中就不能使用全局变量,因为map和reduce函数的执行是在集群的内存中,而mapreduce主程序的执行是在客户端机器的内存中。可以使用以下方法解决:
1 首先全局变量不可以使用,因为全局变量是在运行mapreduce主程序的机器内存当中,在集群的内存中是无法调用的。
2 通过写入mapreduce文件方式,这样如果数据量比较大新增这么一个变量字段不是很合理。
3 通过数据库方式传输。
http://my.oschina.net/muou/blog/408543
1、 把hadoop-eclipse-plugin-2.6.0.jar拷贝到D:\eclipse-jee-luna-SR1-win32\eclipse\plugins目录下,重启一下Eclipse,然后可以看到DFS Locations
2.打开Window-->Preferens,可以看到Hadoop Map/Reduc选项,然后点击,然后添加hadoop-2.6.0进来,如图所示:
3.配置Map/ReduceLocations
1)点击Window-->Show View -->MapReduce Tools 点击Map/ReduceLocation
2)点击Map/ReduceLocation选项卡,点击右边小象图标,打开Hadoop Location配置窗口: 输入Location Name,任意名称即可。配置Map/Reduce Master和DFS Mastrer,Host和Port配置成hdfs-site.xml与core-site.xml的设置一致即可
find / -name ‘hdfs-site.xml’
4.查看是否连接成功
5.新建MapReduce项目并运行
package org.apache.hadoop.examples;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
入参:
点击WordCount.java右击-->Run As-->Run on Hadoop
运行结果: