高斯消元法求解异或方程;
poj1222模板题,网上有许多此题的题解,但还是觉得这个讲的比较好懂 http://blog.youkuaiyun.com/zhuichao001/article/details/5440843
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<climits>
#include<cctype>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<string>
#include<set>
#include<stack>
#define ll long long
#define MAX 1000
#define INF INT_MAX
#define eps 1e-8
using namespace std;
int a[MAX][MAX];
void gauss(){
for (int i=0; i<30; i++){
int k;
for (int j=i; j<30; j++) if(a[j][i]){
k = j;
break;
}
if (k != i){
for (int j=0; j<=30; j++) swap(a[i][j],a[k][j]);
}
for (int j=0; j<30; j++){
if (i != j && a[j][i]){
for (int u=0; u<=30; u++){
a[j][u] ^= a[i][u];
}
}
}
}
}
int main(){
int T;
scanf("%d",&T);
for (int cas = 1; cas <= T; cas++){
for (int i=0; i<30; i++){
scanf("%d",&a[i][30]);
}
for (int i=0; i<30; i++){
a[i][i] = 1;
if (i % 6 == 0){
a[i+1][i] = 1;
}
else if (i % 6 == 5){
a[i-1][i] = 1;
}
else {
a[i-1][i] = 1;
a[i+1][i] = 1;
}
if (i / 6 == 0){
a[i+6][i] = 1;
}
else if (i / 6 == 4){
a[i-6][i] = 1;
}
else {
a[i+6][i] = 1;
a[i-6][i] = 1;
}
}
/*for (int i=0; i<30; i++){
for (int j=0; j<30; j++) printf("%d ",a[i][j]);
printf("\n");
}*/
gauss();
printf("PUZZLE #%d\n",cas);
for (int i=0; i<30; i++){
printf("%d",a[i][30]);
if (i%6 == 5) printf("\n");
else printf(" ");
}
}
return 0;
}高斯消元法求解的个数,高精度模板;
fzu1704
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<climits>
#include<cctype>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<string>
#define ll long long
#define MAX 1000
#define eps 1e-6
#define INF INT_MAX
using namespace std;
int a[MAX][MAX],n,m;
int gcd(int a, int b){
if (b == 0) return a;
return gcd(b, a % b);
}
int LCM(int a, int b){
return a/gcd(a,b)*b;
}
void two_power(int x){
int str[MAX];
memset(str,0,sizeof(str));
str[0] = 1;
int c = 1;
for (int i=1; i<=x; i++){
int g = 0;
for (int j=0; j<c; j++){
str[j] = str[j]*2 + g;
g = str[j] / 10;
str[j] = str[j] % 10;
}
if (g != 0) str[c++] = g;
}
for (int i = c-1; i>=0; i--) printf("%d",str[i]); printf("\n");
return;
}
void Gauss()
{
int u, v;
for(u=0,v=0; u<n&&v<m; u++,v++)
{
int r = u;
for(int i=u+1; i<n; i++)
if(a[i][v]>a[r][v]) r = i;
if(r != u)
for(int i=u; i<=m; i++) swap(a[u][i],a[r][i]);
if(a[u][v]==0) {
u--;
continue;
}
for(int i=u+1; i<n; i++)
if(a[i][v] != 0)
{
int lcm=LCM(a[i][v], a[u][v]);
int ta=lcm / a[i][v], tb=lcm / a[u][v];
if(a[i][v] * a[u][v] < 0) tb = -tb;
for(int j=v; j<=m; j++)
a[i][j]=((a[i][j]*ta)%2 - (a[u][j]*tb)%2+2)%2;
}
}
for(int i=u; i<n; i++)
if(a[i][v]!=0) {puts("0");return;}
two_power(m - u);
}
int main(){
int T ;
scanf("%d",&T);
while (T--){
scanf("%d%d",&n,&m);
memset(a,0,sizeof(a));
for (int i=0; i<n; i++) scanf("%d",&a[i][m]);
for (int i=0; i<m; i++){
int u,v;
scanf("%d",&u);
while (u--){
scanf("%d",&v);
v--;
a[v][i] = 1;
}
}
Gauss();
}
return 0;
}
hdu2449高精度高斯消元模板求方程组的解,要求结果为分数形式;
http://www.cnblogs.com/DrunBee/archive/2012/09/04/2669797.html
在模P的线性空间下的高斯消元法求解方程组的 模板题目poj2065
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<climits>
#include<cctype>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<string>
#define ll long long
#define MAX 100
#define eps 1e-6
#define INF INT_MAX
using namespace std;
int a[MAX][MAX],x[MAX],n,m;
int gcd(int a, int b){
if (a < 0) return gcd(-a, b);
if (b < 0) return gcd(a,-b);
return b == 0 ? a : gcd(b, a % b);
}
int LCM(int a, int b){
return a/gcd(a,b)*b;
}
int mod_mul(int a, int b, int N)
{
int ret = 0;
while (b)
{
if (b & 1)
ret = (ret + a) % N;
a = 2 * a % N;
b >>= 1;
}
return ret;
}
int mod_pow(int x, int n, int N)
{
int ret = 1;
x %= N;
while (n)
{
if (n & 1)
ret = mod_mul(ret, x, N);
x = mod_mul(x, x, N);
n >>= 1;
}
return ret;
}
void Gauss(int P) //模P下的高斯消元法解方程组
{
int u, v;
for(u=0,v=0; u<n&&v<m; u++,v++)
{
int r = u;
for(int i=u+1; i<n; i++)
if(a[i][v]>a[r][v]) r = i;
if(r != u)
for(int i=u; i<=m; i++) swap(a[u][i],a[r][i]);
if(a[u][v] == 0) {
u--;
continue;
}
for(int i=u+1; i<n; i++)
if(a[i][v] != 0)
{
int lcm=LCM(a[i][v], a[u][v]);
int ta=lcm / a[i][v], tb=lcm / a[u][v];
if(a[i][v] * a[u][v] < 0) tb = -tb;
for(int j=v; j<=m; j++)
a[i][j] = ((a[i][j]*ta) % P - (a[u][j]*tb) % P + P) % P;
}
}
for (int i = u; i < m; i++) if (a[i][m] != 0) return; //有解性判断
if (u < m) return; //无穷解的情况,其中m-u为自由变元的数量
for (int i=m-1; i>=0; i--){ //回带求解过程
int tmp = a[i][m];
for (int j=i+1; j<m; j++){
tmp = ((tmp - a[i][j]*x[j]) % P + P ) % P;
}
while (tmp % a[i][i] != 0){ //将解最好化为整数(模P下有解则一定存在整数解)
tmp += P;
}
x[i] = (tmp / a[i][i]) % P;
}
}
int main(){
int T,P;
char s[MAX];
scanf("%d",&T);
while (T--){
scanf("%d%s",&P,s);
n = m = strlen(s);
for (int i=0; i<n; i++){
if (s[i] == '*')
a[i][m] = 0;
else
a[i][m] = s[i] - 'a' + 1;
}
for (int i=0; i<n; i++){
for (int j=0; j<m; j++)
a[i][j] = mod_pow(i+1,j,P);
}
Gauss(P);
for (int i=0; i<n-1; i++) printf("%d ",x[i]);
printf("%d\n",x[n-1]);
}
return 0;
}
2148

被折叠的 条评论
为什么被折叠?



