python爬取链家网房源信息

import requests
import parsel
import time
from datetime import datetime, timedelta
import pandas as pd
import logging
import traceback
import json
import sys
import os
import re
import pandas as pd
import numpy as np
import datetime

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)


class App():
    def __init__(self):
        self.url =  'https://su.lianjia.com/ershoufang/huaqiao/pg' #苏州二手房
        self.headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'}

    def get_data_lianjia(self):
        response = requests.get(url=self.url,headers=self.headers)
        selector = parsel.Selector(response.text)
        page_info = selector.css('.contentBottom div')
        page_total_list = json.loads(page_info.xpath('.//@page-data').getall()[0])['totalPage']
        df_all = pd.DataFrame()
        for page in range(1,page_total_list+1):
            print('======正在下载第{}页数据======='.format(page))
            time.sleep(1)
            url_str = self.url + '{}/'.format(page)
            response = requests.get(url=url_str, headers=self.headers)
            selector = parsel.Selector(response.text)
            lis = selector.css('.sellListContent li')
            dit={}
            for li in lis:
                title = li.css('.title a::text').get()
                dit['标题'] = title
                positionInfo = li.css('.positionInfo a::text').getall()
                info = '-'.join(positionInfo)
                dit['开发商'] = info
                houseInfo = li.css('.houseInfo::text').get()
                house_href = li.xpath('.//@href').getall()[2].split(r'/')[4]
                dit['小区id'] = house_href
                dit['小区名称'] = li.css('.positionInfo a::text').get()
                #house_info_list = houseInfo.split('|')
                #dit['户型'],dit['面积'],dit['方向'],dit['装修'],dit['楼层'],dit['建筑类型'] = house_info_list[0],house_info_list[1],house_info_list[2],house_info_list[3],house_info_list[4],house_info_list[5]
                dit['房子信息'] = houseInfo
                followInfo = li.css('.followInfo::text').get()
                dit['发布周期'] = followInfo
                Price = li.css('.totalPrice span::text').get()
                dit['售价/万'] = Price
                unitPrice = li.css('.unitPrice span::text').get()
                dit['单价'] = unitPrice
                df = pd.DataFrame(np.array(list(dit.values())).reshape(1,14),columns=list(dit.keys()))
                #print(df)
                df_all = pd.concat([df_all,df],axis=0)
                #print(df_all)
                #time.sleep(10)
        #print(df_all)
        df_all.to_excel('花桥二手房一览_{}.xlsx'.format(datetime.datetime.now().strftime('%Y-%m-%d_%HH:%MM:%SS')),index=True)

if __name__ == '__main__':
    app = App()
    # cyscreen.return_data()
    app.get_data_lianjia()

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值