参考:https://mp.weixin.qq.com/s/dFumpp1wBO1NWes3AxVBRw
参考:https://www.cnblogs.com/diegodu/p/6823855.html
说明
- bio:b有两说,一为base,jdk中最早抽象出的io体系;一为block,jdk 1.0 中的io体系是阻塞的。所以两说皆有道理,一般我们认为b取block之意
- nio:n也有两说,一为new,针对base而言;一为non-block,针对block而言。
- aio:a为asynchronous,异步的,异步io,aio还有个名字叫:nio2
发展历程:bio(jdk1.0) -> nio(jdk1.4) -> aio(jdk1.7)
假设某银行只有10个职员。该银行的业务流程分为以下4个步骤:
1) 顾客填申请表(5分钟);
2) 职员审核(1分钟);
3) 职员叫保安去金库取钱(3分钟);
4) 职员打印票据,并将钱和票据返回给顾客(1分钟)。
我们看看银行不同的工作方式对其工作效率到底有何影响。
一:BIO方式
每来一个顾客,马上由一位职员来接待处理,并且这个职员需要负责以上4个完整流程。当超过10个顾客时,剩余的顾客需要排队等候。
我们算算这个银行一个小时到底能处理多少顾客?一个职员处理一个顾客需要10分钟(5+1+3+1)时间,一个小时(60分钟)能处理6个顾客,一共10个职员,那就是只能处理60个顾客。
可以看到银行职员的工作状态并不饱和,比如在第1步,其实是处于等待中。
这种工作其实就是BIO,每次来一个请求(顾客),就分配到线程池中由一个线程(职员)处理,如果超出了线程池的最大上限(10个),就扔到队列等待 。
二:NIO方式
如何提高银行的吞吐量呢?
思路:分而治之,将任务拆分开来,由专门的人负责专门的任务。
具体来讲,银行专门指派一名职员A,A的工作就是每当有顾客到银行,他就递上表格让顾客填写,每当有顾客填好表后,A就将其随机指派给剩余的9名职员完成后续步骤。
我们计算下这种工作方式下银行一个小时到底能处理多少顾客?
假设顾客非常多,职员A的工作处于饱和中,他不断的将填好表的顾客带到柜台处理,柜台一个职员5分钟能处理完一个顾客,一个小时9名职员能处理:9*(60/5)=108。
可见工作方式的转变能带来效率的极大提升。
这种工作方式其实就NIO的思路。下图是非常经典的NIO说明图,mainReactor线程负责监听server socket,accept新连接,并将建立的socket分派给subReactor;subReactor可以是一个线程,也可以是线程池(一般可以设置为CPU核数),负责多路分离已连接的socket,读写网络数据,这里的读写网络数据可类比顾客填表这一耗时动作,对具体的业务处理功能,其扔给worker线程池完成。
可以看到典型NIO有三类线程,分别是mainReactor线程、subReactor线程、work线程。不同的线程干专业的事情,最终每个线程都没空着,系统的吞吐量自然就上去了。
三:异步方式
第二种工作方式有没有什么可以提高的地方呢?
仔细查看可发现第3步骤这3分钟柜台职员是在等待中度过的,那怎么能让柜台职员保持满负荷呢?
还是分而治之的思路,指派1个职员B来专门负责第3步骤。每当柜台员工完成第2步时,就通知职员B来负责与保安沟通取钱。这时候柜台员工可以继续处理下一个顾客。当职员B拿到钱之后,他会怎么办呢?他会通知顾客钱已经到柜台了,让顾客重新排队处理,当柜台职员再次服务该顾客时,发现该顾客前3步已经完成,直接执行第4步即可。
我们可以算算通过这种方法,银行的吞吐量能提高到多少。
假设职员B的工作非常饱和,柜台一个职员现在2分钟能处理完一个顾客,一个小时8名职员能处理:8*(60/2)=240。
在当今web服务中,经常需要通过RPC或者Http等方式调用第三方服务,这里对应的就是第3步,如果这步耗时较长,通过异步方式将能极大降低资源使用率。
jetty Continuations 就实现了上述异步方式,有兴趣的同学可以去尝试下(http://wiki.eclipse.org/Jetty/Feature/Continuations)。
NIO+异步的方式能让少量的线程(资源)做大量的事情,这适用于很多应用场景,比如代理服务、api服务、长连接服务等等,这些应用如果用同步方式将耗费大量机器资源。尽管NIO+异步能提高系统吞吐量,但其并不能让一个请求的等待时间下降,相反可能会增加等待时间。
四:小结
总结就一句:“分而治之,将任务拆分开来,由专门的人负责专门的任务”,这不仅在计算机领域生效,在整个社会领域都生效。
IO和NIO的区别
NIO即New IO,这个库是在JDK1.4中才引入的。NIO和IO有相同的作用和目的,但实现方式不同,NIO主要用到的是块,所以NIO的效率要比IO高很多。在Java API中提供了两套NIO,一套是针对标准输入输出NIO,另一套就是网络编程NIO。
Java IO和NIO之间第一个最大的区别是,IO是面向流的,NIO是面向缓冲区的。
Java IO的各种流是阻塞的,Java NIO的非阻塞模式。
Java NIO的选择器允许一个单独的线程来监视多个输入通道。
从编程语言层面
BIO | NIO | AIO 以Java的角度,理解如下:
BIO,同步阻塞式IO,简单理解:一个线程处理一个连接,发起和处理IO请求都是同步的
NIO,同步非阻塞IO,简单理解:一个线程处理多个连接,发起IO请求是非阻塞的但处理IO请求是同步的
AIO,异步非阻塞IO,简单理解:一个有效请求一个线程,发起和处理IO请求都是异步的
BIO
在JDK1.4之前,用Java编写网络请求,都是建立一个ServerSocket,然后,客户端建立Socket时就会询问是否有线程可以处理,如果没有,要么等待,要么被拒绝。即:一个连接,要求Server对应一个处理线程。
NIO
在Java里的由来,在JDK1.4及以后版本中提供了一套API来专门操作非阻塞I/O,我们可以在java.nio包及其子包中找到相关的类和接口。由于这套API是JDK新提供的I/O API,因此,也叫New I/O,这就是包名nio的由来。这套API由三个主要的部分组成:缓冲区(Buffers)、通道(Channels)和非阻塞I/O的核心类组成。在理解NIO的时候,需要区分,说的是New I/O还是非阻塞IO,New I/O是Java的包,NIO是非阻塞IO概念。这里讲的是后面一种。
NIO本身是基于事件驱动思想来完成的,其主要想解决的是BIO的大并发问题: 在使用同步I/O的网络应用中,如果要同时处理多个客户端请求,或是在客户端要同时和多个服务器进行通讯,就必须使用多线程来处理。也就是说,将每一个客户端请求分配给一个线程来单独处理。这样做虽然可以达到我们的要求,但同时又会带来另外一个问题。由于每创建一个线程,就要为这个线程分配一定的内存空间(也叫工作存储器),而且操作系统本身也对线程的总数有一定的限制。如果客户端的请求过多,服务端程序可能会因为不堪重负而拒绝客户端的请求,甚至服务器可能会因此而瘫痪。
NIO基于Reactor,当socket有流可读或可写入socket时,操作系统会相应的通知引用程序进行处理,应用再将流读取到缓冲区或写入操作系统。
也就是说,这个时候,已经不是一个连接就要对应一个处理线程了,而是有效的请求,对应一个线程,当连接没有数据时,是没有工作线程来处理的。
AIO
与NIO不同,操作系统负责处理内核区/用户区的内存数据迁移和真正的IO操作,应用程序只须直接调用API的read或write方法即可。这两种方法均为异步的,对于读操作而言,当有流可读取时,操作系统会将可读的流传入read方法的缓冲区,并通知应用程序;对于写操作而言,当操作系统将write方法传递的流写入完毕时,操作系统主动通知应用程序。
即可以理解为,read/write方法都是异步的,完成后会主动调用回调函数。
在JDK1.7中,这部分内容被称作NIO.2,主要在java.nio.channels包下增加了下面四个异步通道:
AsynchronousSocketChannel
AsynchronousServerSocketChannel
AsynchronousFileChannel
AsynchronousDatagramChannel
其中的read/write方法,会返回一个带回调函数的对象,当执行完读取/写入操作后,直接调用回调函数。