HDOJ 5615 Jam's math problem

本文介绍了一个数学问题,即如何将形式为ax²+bx+c的多项式因式分解为(px+k)(qx+m)的形式,并给出了具体的解决方法及示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Jam's math problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 182    Accepted Submission(s): 92


Problem Description
Jam has a math problem. He just learned factorization.
He is trying to factorize ax2+bx+c into the form of pqx2+(qk+mp)x+km=(px+k)(qx+m) .
He could only solve the problem in which p,q,m,k are positive numbers.
Please help him determine whether the expression could be factorized with p,q,m,k being postive.
 

Input
The first line is a number T , means there are T(1T100) cases

Each case has one line,the line has 3 numbers a,b,c(1a,b,c100000000)
 

Output
You should output the "YES" or "NO".
 

Sample Input
  
  
2 1 6 5 1 6 4
 

Sample Output
  
  
YES NO
Hint
The first case turn $x^2+6*x+5$ into $(x+1)(x+5)$
 

题意: ax^2+bx+c ==> qpx^2+(qk+mp)x+km == (px+k)*(qx+m)  给出a,b,c;问是否存在正整数p,q,
m,k。

题解:  枚举p,q,k,m啊,再判断(qk+mp)||(qm+pk)是否等于b就行了。 啊啊啊啊啊啊!!!!!! 这么简单我都没想到,没救了。。。。

代码如下:

#include<cstdio>
#include<cstring>
#include<cmath>
int main()
{
	int t,i,j,a,b,c,q,p,k,m,flag;
	scanf("%d",&t);
	while(t--)
	{
		flag=0;
		scanf("%d%d%d",&a,&b,&c);
		for(i=1;i<=sqrt(a*1.0);++i)
		{
			if(a%i==0)
			{
				p=i;
				q=a/p;
				for(j=1;j<=sqrt(c*1.0);++j)
				{
					if(c%j==0)
					{
						k=j;
						m=c/k;
						if(k*q+m*p==b||k*p+m*q==b)
						{
							flag=1;
							break;
						}
					}
				}
			}
			if(flag)
				break;
		}
		if(flag)
			printf("YES\n");
		else
			printf("NO\n");
	}
	return 0;
} 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值