女子国际乒联排名

国际乒联排名    2008年03月02日
 年 月 协会  
  至   姓名   排名    变化    姓名    协会    积分
1    (2)    张怡宁    中国    12757
2    (3)    李晓霞    中国    12744
3    (1)    郭跃    中国    12735
4    (<<)    王楠    中国    12718
5    (<<)    郭焱    中国    12636
6    (<<)    王越古    新加坡    12416
7    (<<)    姜华珺    中国香港    12396
8    (<<)    李佳薇    新加坡    12389
9    (10)    福原爱    日本    12219
10    (9)    帖雅娜    中国香港    12203
11    (<<)    林菱    中国香港    12169
12    (<<)    牛剑锋    中国    12142
13    (<<)    金暻娥    韩国    12129
14    (19)    李佼    荷兰    12123
15    (14)    孙蓓蓓    新加坡    12099
16    (17)    刘佳    奥地利    12069
17    (15)    吴佳多    德国    12063
18    (17)    曹臻    中国    12061
19    (16)    平野早矢香    日本    12059
20    (<<)    高军    美国    12005
21    (<<)    朴美英    韩国    11995
22    (23)    刘诗雯    中国    11989
23    (22)    福冈春菜    日本    11984
24    (<<)    鲍罗斯    克罗地亚    11977
25    (27)    李倩    波兰    11966
26    (<<)    丁宁    中国    11960
27    (25)    张瑞    中国香港    11956
28    (<<)    冯天薇    新加坡    11953
29    (31)    彭陆洋    中国    11934
30    (29)    王晨    美国    11930
31    (33)    李恩姬    韩国    11928
32    (34)    常晨晨    中国    11926
33    (35)    范瑛    中国    11925
34    (30)    托特    匈牙利    11924
35    (36)    李楠    中国    11922
36    (38)    沈燕飞    西班牙    11922
37    (32)    金沢咲西    日本    11920
38    (37)    柳絮飞    中国香港    11899
39    (43)    倪夏莲    卢森堡    11898
40    (39)    多迪安    罗马尼亚    11890
41    (40)    陈晴    中国    11876
42    (<<)    姚彦    中国    11857
43    (44)    吴雪    多米尼加共和国    11849
44    (41)    E-沃西克    德国    11847
45    (<<)    藤井宽子    日本    11834
46    (<<)    藤沼亚衣    日本    11826
46    (50)    波塔    匈牙利    11826
48    (49)    斯蒂芙    罗马尼亚    11819
49    (48)    于梦雨    新加坡    11815
50    (53)    谭文玲    意大利    11813
内容概要:该论文聚焦于T2WI核磁共振图像超分辨率问题,提出了一种利用T1WI模态作为辅助信息的跨模态解决方案。其主要贡献包括:提出基于高频信息约束的网络框架,通过主干特征提取分支和高频结构先验建模分支结合Transformer模块和注意力机制有效重建高频细节;设计渐进式特征匹配融合框架,采用多阶段相似特征匹配算法提高匹配鲁棒性;引入模型量化技术降低推理资源需求。实验结果表明,该方法不仅提高了超分辨率性能,还保持了图像质量。 适合人群:从事医学图像处理、计算机视觉领域的研究人员和工程师,尤其是对核磁共振图像超分辨率感兴趣的学者和技术开发者。 使用场景及目标:①适用于需要提升T2WI核磁共振图像分辨率的应用场景;②目标是通过跨模态信息融合提高图像质量,解决传统单模态方法难以克服的高频细节丢失问题;③为临床诊断提供更高质量的影像资料,帮助医生更准确地识别病灶。 其他说明:论文不仅提供了详细的网络架构设计与实现代码,还深入探讨了跨模态噪声的本质、高频信息约束的实现方式以及渐进式特征匹配的具体过程。此外,作者还对模型进行了量化处理,使得该方法可以在资源受限环境下高效运行。阅读时应重点关注论文中提到的技术创新点及其背后的原理,理解如何通过跨模态信息融合提升图像重建效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值