Given an array of n integers nums and a target, find the number of index triplets i, j, k
with 0 <= i < j < k < n
that satisfy the condition nums[i] + nums[j] + nums[k] < target
.
For example, given nums = [-2, 0, 1, 3]
, and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1] [-2, 0, 3]
Follow up:
Could you solve it in O(n2) runtime?
public class Solution {
public int threeSumSmaller(int[] nums, int target) {
Arrays.sort(nums);
int res = 0;
for (int i = 0; i < nums.length; i ++) {
//if (i == 0 || nums[i] != nums[i - 1]) {
int low = i + 1, high = nums.length - 1, sum = target - nums[i];
while (low < high) {
if (nums[low] + nums[high] < sum) {
res += high - low;
low ++;
//while (low < high && nums[low] == nums[low - 1]) low ++;
} else {
high --;
while (low < high && nums[high] == nums[high + 1]) high --;
}
}
//}
}
return res;
}
}