Anton and Lines(模拟,有点贪心的思想)

本文介绍了一个几何问题的解决方法,该问题是寻找n条直线在指定范围内的交点。通过使用整数运算,确保了计算的准确性,并提供了一种有效的算法来判断是否存在这样的交点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Anton and Lines
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

The teacher gave Anton a large geometry homework, but he didn't do it (as usual) as he participated in a regular round on Codeforces. In the task he was given a set of n lines defined by the equations y = ki·x + bi. It was necessary to determine whether there is at least one point of intersection of two of these lines, that lays strictly inside the strip between x1 < x2. In other words, is it true that there are1 ≤ i < j ≤ n and x', y', such that:

  • y' = ki * x' + bi, that is, point (x', y') belongs to the line number i;
  • y' = kj * x' + bj, that is, point (x', y') belongs to the line number j;
  • x1 < x' < x2, that is, point (x', y') lies inside the strip bounded by x1 < x2.

You can't leave Anton in trouble, can you? Write a program that solves the given task.

Input

The first line of the input contains an integer n (2 ≤ n ≤ 100 000) — the number of lines in the task given to Anton. The second line contains integers x1 and x2 ( - 1 000 000 ≤ x1 < x2 ≤ 1 000 000) defining the strip inside which you need to find a point of intersection of at least two lines.

The following n lines contain integers kibi ( - 1 000 000 ≤ ki, bi ≤ 1 000 000) — the descriptions of the lines. It is guaranteed that all lines are pairwise distinct, that is, for any two i ≠ j it is true that either ki ≠ kj, or bi ≠ bj.

Output

Print "Yes" (without quotes), if there is at least one intersection of two distinct lines, located strictly inside the strip. Otherwise print "No" (without quotes).

Sample test(s)
input
4
1 2
1 2
1 0
0 1
0 2
output
NO
input
2
1 3
1 0
-1 3
output
YES
input
2
1 3
1 0
0 2
output
YES
input
2
1 3
1 0
0 3
output
NO
Note

In the first sample there are intersections located on the border of the strip, but there are no intersections located strictly inside it.

                                                                         


思路:

     

For problem B, I think that there's no need to use EPS. The announced message during the contest maybe lead contestants the wrong ways.

My solution is all using int. In general, a Line Y = a * X + b, because [a, b] are Integers, [X1, X2] are also Integers, so we can sure that [Y1, Y2] are Integers either.

So now you have ([Yi1, Yi2]), sort that array.

Two lines (i, i + 1) are intersected strictly in range(X1, X2) must have a order that Yi1 <= Y(i+1)1 andYi2 >= Y(i+1)2. Because all lines are distinct, so these pairs are not identical.

Remember to use long long int.



AC代码:


#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<cstdio>
#include<cmath>
using namespace std;
#define CRL(a) memset(a,0,sizeof(a))
typedef __int64 ll;
#define T 200005
pair<ll,ll> p[T];
int main()
{
#ifdef zsc
    freopen("input.txt","r",stdin);
#endif
	ll n,i,k,x1,x2,b;
	while(~scanf("%I64d",&n))
	{
		scanf("%I64d%I64d",&x1,&x2);
		for(i=0;i<n;++i){
			scanf("%I64d%I64d",&k,&b);
			p[i] = make_pair(k*x1+b,k*x2+b);
		}
		sort(p,p+n);
		bool flag = false;
		for(i=1;i<n;++i){
			if(p[i-1].second>p[i].second){
				flag = true;break;
			}
		}
		if(flag)
		printf("YES\n");
		else
		printf("NO\n");
	}
	return 0;
}



内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值