[LeetCode] Unique Paths II

本文介绍了一种解决网格中存在障碍物时寻找从起点到终点的唯一路径数量的方法。采用动态规划算法,在原数组上进行修改以节省空间,实现O(1)的空间复杂度。

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

动态规划:o(1)空间复杂度  在原数组上修改

public class Solution {
	//o(1)空间复杂度  在原数组上修改
	public int uniquePathsWithObstacles(int[][] obstacleGrid) {
		if(obstacleGrid.length==0||obstacleGrid[0].length==0) return 0;
		for(int i=0;i<obstacleGrid.length;i++){
			for(int j=0;j<obstacleGrid[0].length;j++){
				if(obstacleGrid[i][j]==1) obstacleGrid[i][j]=-1;
			}
		}
		for(int i=0;i<obstacleGrid[0].length;i++){
			if(obstacleGrid[0][i]==-1) obstacleGrid[0][i]=0;
			else if(i==0) obstacleGrid[0][i]=1;
			else obstacleGrid[0][i]=obstacleGrid[0][i-1];
		}
		for(int i=1;i<obstacleGrid.length;i++){
			if(obstacleGrid[i][0]==-1) obstacleGrid[i][0]=0;
			else obstacleGrid[i][0]=obstacleGrid[i-1][0];
		}
		for(int i=1;i<obstacleGrid.length;i++){
			for(int j=1;j<obstacleGrid[0].length;j++){
				if(obstacleGrid[i][j]==-1) obstacleGrid[i][j]=0;
				else  obstacleGrid[i][j]=obstacleGrid[i-1][j]+obstacleGrid[i][j-1];
			}
		}
		return obstacleGrid[obstacleGrid.length-1][obstacleGrid[0].length-1];
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值