Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
动态规划:o(1)空间复杂度 在原数组上修改
public class Solution {
//o(1)空间复杂度 在原数组上修改
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid.length==0||obstacleGrid[0].length==0) return 0;
for(int i=0;i<obstacleGrid.length;i++){
for(int j=0;j<obstacleGrid[0].length;j++){
if(obstacleGrid[i][j]==1) obstacleGrid[i][j]=-1;
}
}
for(int i=0;i<obstacleGrid[0].length;i++){
if(obstacleGrid[0][i]==-1) obstacleGrid[0][i]=0;
else if(i==0) obstacleGrid[0][i]=1;
else obstacleGrid[0][i]=obstacleGrid[0][i-1];
}
for(int i=1;i<obstacleGrid.length;i++){
if(obstacleGrid[i][0]==-1) obstacleGrid[i][0]=0;
else obstacleGrid[i][0]=obstacleGrid[i-1][0];
}
for(int i=1;i<obstacleGrid.length;i++){
for(int j=1;j<obstacleGrid[0].length;j++){
if(obstacleGrid[i][j]==-1) obstacleGrid[i][j]=0;
else obstacleGrid[i][j]=obstacleGrid[i-1][j]+obstacleGrid[i][j-1];
}
}
return obstacleGrid[obstacleGrid.length-1][obstacleGrid[0].length-1];
}
}