面试题09. 用两个栈实现队列

面试题09. 用两个栈实现队列

难度简单10

用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,deleteHead 操作返回 -1 )

示例 1:

输入:
["CQueue","appendTail","deleteHead","deleteHead"]
[[],[3],[],[]]
输出:[null,null,3,-1]

示例 2:

输入:
["CQueue","deleteHead","appendTail","appendTail","deleteHead","deleteHead"]
[[],[],[5],[2],[],[]]
输出:[null,-1,null,null,5,2]

提示:

  • 1 <= values <= 10000
  • 最多会对 appendTail、deleteHead 进行 10000 次调用

解法一:定义两个栈in和out,当需要入队的时候将元素压入栈in中,当需要出队的时候将in中的元素从栈顶到栈底依次压入栈out中,然后弹出栈out顶部元素,即可出队成功。之后再将out中的元素从栈顶到栈底依次压回栈in中。

解法二:定义两个栈in和out,当需要入队的时候将元素压入栈in中,当需要出队的时候,判断一下栈out是否为空,如果为空,则将栈in中的元素从栈顶到栈底依次压入栈out中,然后弹出栈out顶部元素,即可出队成功。如果不为空,直接将out顶部元素弹出,即可出队成功。代码如下:

class CQueue {
public:
        stack<int>In;
        stack<int>Out;
    CQueue() {

    }
    
    void appendTail(int value) {
        In.push(value);
    }
    
    int deleteHead() {
        if(In.empty() && Out.empty())
            return -1;
        if(Out.empty()){
            while(!In.empty()){
                Out.push(In.top());
                In.pop();
            }
        }
        int num = Out.top();
        Out.pop();
        return num;
    }
};

/**
 * Your CQueue object will be instantiated and called as such:
 * CQueue* obj = new CQueue();
 * obj->appendTail(value);
 * int param_2 = obj->deleteHead();
 */

 

基于python实现的粒子群的VRP(车辆配送路径规划)问题建模求解+源码+项目文档+算法解析,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 算法设计的关键在于如何向表现较好的个体学习,标准粒子群算法引入惯性因子w、自我认知因子c1、社会认知因子c2分别作为自身、当代最优解和历史最优解的权重,指导粒子速度和位置的更新,这在求解函数极值问题时比较容易实现,而在VRP问题上,速度位置的更新则难以直接采用加权的方式进行,一个常见的方法是采用基于遗传算法交叉算子的混合型粒子群算法进行求解,这里采用顺序交叉算子,对惯性因子w、自我认知因子c1、社会认知因子c2则以w/(w+c1+c2),c1/(w+c1+c2),c2/(w+c1+c2)的概率接受粒子本身、当前最优解、全局最优解交叉的父代之一(即按概率选择其中一个作为父代,不加权)。 算法设计的关键在于如何向表现较好的个体学习,标准粒子群算法引入惯性因子w、自我认知因子c1、社会认知因子c2分别作为自身、当代最优解和历史最优解的权重,指导粒子速度和位置的更新,这在求解函数极值问题时比较容易实现,而在VRP问题上,速度位置的更新则难以直接采用加权的方式进行,一个常见的方法是采用基于遗传算法交叉算子的混合型粒子群算法进行求解,这里采用顺序交叉算子,对惯性因子w、自我认知因子c1、社会认知因子c2则以w/(w+c1+c2),c1/(w+c1+c2),c2/(w+c1+c2)的概率接受粒子本身、当前最优解、全局最优解交叉的父代之一(即按概率选择其中一个作为父代,不加权)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值