import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn
import os
import sys
import time
import tensorflow as tf
import pprint
from tensorflow import keras
print('Tensorflows Version:{}'.format(tf.__version__))
# print('Is gpu available:{}'.format(tf.test.is_gpu_available()))
print(sys.version_info)
for module in mpl, np, pd, sklearn, tf, keras:
print(module.__name__, module.__version__)
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
housing = fetch_california_housing()
# print(housing.DESCR)
# print(housing.data.shape)
# print(housing.target.shape)
# pprint.pprint(housing.data[0:5])
# pprint.pprint(housing.target[0:5])
x_train_all, x_test, y_train_all, y_test = train_test_split(
housing.data, housing.target, random_state=7, test_size=0.25)
x_train, x_vaild, y_train, y_vaild = train_test_split(
x_train_all, y_train_all, random_state=7, test_size=0.25)
scaler = StandardScaler()
x_train_scaler = scaler.fit_transform(x_train)
x_vaild_scaler = scaler.transform(x_vaild)
x_test_scaler = scaler.transform(x_test)
model = keras.models.Sequential()
model.add(keras.layers.Dense(100, input_shape=x_train.shape[1:]))
for _ in range(20):
model.add(keras.layers.Dense(100, activation='relu'))
model.add(keras.layers.BatchNormalization())
'''
model.add(keras.layers.Dense(100))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation('relu'))
'''
model.add(keras.layers.Dense(1))
model.summary()
model.compile(optimizer='adam',
loss=keras.losses.mean_absolute_error)
callbacks = [keras.callbacks.EarlyStopping(patience=5, min_delta=1e-3)]
history = model.fit(x_train_scaler, y_train,
epochs=100,
validation_data=(x_vaild_scaler, y_vaild),
callbacks=callbacks)
def plot_learning_curves(history):
pd.DataFrame(history.history).plot(figsize=(8,5))
plt.grid(True)
plt.gca().set_ylim(0,1)
plt.show()
plot_learning_curves(history)
print('model.evaluate==================')
model.evaluate(x_test_scaler, y_test)
[tensorflow2.0]06.BatchNormallization
加州房价预测:深度学习实战
最新推荐文章于 2022-09-02 14:30:48 发布
本文通过使用深度学习技术,构建了一个预测加州房价的模型。利用Keras库搭建神经网络,采用批量归一化和ReLU激活函数进行训练,通过EarlyStopping回调函数防止过拟合。展示了模型训练过程的学习曲线,并最终评估了模型在测试集上的表现。
885

被折叠的 条评论
为什么被折叠?



