[tensorflow2.0]06.BatchNormallization

本文通过使用深度学习技术,构建了一个预测加州房价的模型。利用Keras库搭建神经网络,采用批量归一化和ReLU激活函数进行训练,通过EarlyStopping回调函数防止过拟合。展示了模型训练过程的学习曲线,并最终评估了模型在测试集上的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import matplotlib as mpl
import matplotlib.pyplot as plt

import numpy as np
import pandas as pd
import sklearn
import os
import sys
import time
import tensorflow as tf
import pprint

from tensorflow import keras

print('Tensorflows Version:{}'.format(tf.__version__))
# print('Is gpu available:{}'.format(tf.test.is_gpu_available()))
print(sys.version_info)
for module in mpl, np, pd, sklearn, tf, keras:
    print(module.__name__, module.__version__)


from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

housing = fetch_california_housing()
# print(housing.DESCR)
# print(housing.data.shape)
# print(housing.target.shape)
# pprint.pprint(housing.data[0:5])
# pprint.pprint(housing.target[0:5])

x_train_all, x_test, y_train_all, y_test = train_test_split(
    housing.data, housing.target, random_state=7, test_size=0.25)
x_train, x_vaild, y_train, y_vaild = train_test_split(
    x_train_all, y_train_all, random_state=7, test_size=0.25)

scaler = StandardScaler()
x_train_scaler = scaler.fit_transform(x_train)
x_vaild_scaler = scaler.transform(x_vaild)
x_test_scaler = scaler.transform(x_test)

model = keras.models.Sequential()
model.add(keras.layers.Dense(100, input_shape=x_train.shape[1:]))
for _ in range(20):
    model.add(keras.layers.Dense(100, activation='relu'))
    model.add(keras.layers.BatchNormalization())
    '''
    model.add(keras.layers.Dense(100))
    model.add(keras.layers.BatchNormalization())
    model.add(keras.layers.Activation('relu'))
    '''
model.add(keras.layers.Dense(1))

model.summary()
model.compile(optimizer='adam',
              loss=keras.losses.mean_absolute_error)

callbacks = [keras.callbacks.EarlyStopping(patience=5, min_delta=1e-3)]

history = model.fit(x_train_scaler, y_train,
                    epochs=100,
                    validation_data=(x_vaild_scaler, y_vaild),
                    callbacks=callbacks)

def plot_learning_curves(history):
    pd.DataFrame(history.history).plot(figsize=(8,5))
    plt.grid(True)
    plt.gca().set_ylim(0,1)
    plt.show()

plot_learning_curves(history)

print('model.evaluate==================')
model.evaluate(x_test_scaler, y_test)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值