import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn
import os
import sys
import time
import tensorflow as tf
import pprint
from tensorflow import keras
print('Tensorflows Version:{}'.format(tf.__version__))
# print('Is gpu available:{}'.format(tf.test.is_gpu_available()))
print(sys.version_info)
for module in mpl, np, pd, sklearn, tf, keras:
print(module.__name__, module.__version__)
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
housing = fetch_california_housing()
# print(housing.DESCR)
# print(housing.data.shape)
# print(housing.target.shape)
# pprint.pprint(housing.data[0:5])
# pprint.pprint(housing.target[0:5])
x_train_all, x_test, y_train_all, y_test = train_test_split(
housing.data, housing.target, random_state=7, test_size=0.25)
x_train, x_vaild, y_train, y_vaild = train_test_split(
x_train_all, y_train_all, random_state=7, test_size=0.25)
scaler = StandardScaler()
x_train_scaler = scaler.fit_transform(x_train)
x_vaild_scaler = scaler.transform(x_vaild)
x_test_scaler = scaler.transform(x_test)
model = keras.models.Sequential([
keras.layers.Dense(30, input_shape=x_train.shape[1:], activation='relu'),
keras.layers.Dense(1),
])
model.summary()
model.compile(optimizer='adam',
loss='mse')
callbacks = [keras.callbacks.EarlyStopping(patience=5, min_delta=1e-3)]
history = model.fit(x_train_scaler, y_train,
epochs=100,
validation_data=(x_vaild_scaler, y_vaild),
callbacks=callbacks)
def plot_learning_curves(history):
pd.DataFrame(history.history).plot(figsize=(8,5))
plt.grid(True)
plt.gca().set_ylim(0,1)
plt.show()
plot_learning_curves(history)
print('model.evaluate==================')
model.evaluate(x_test_scaler, y_test)
[tensorflow2.0]03.fetch_california_housing
最新推荐文章于 2025-03-18 10:43:16 发布
本文详细介绍了如何使用TensorFlow 2.0进行加利福尼亚住房数据集的加载、预处理、构建模型、训练以及评估。通过实例展示了TensorFlow的新特性和API用法。
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
TensorFlow-v2.15
TensorFlow
TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

9万+

被折叠的 条评论
为什么被折叠?



