import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.client import device_lib
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
mnist = input_data.read_data_sets('./data/demo1_mnist/mnist_data/', one_hot=True)
import random
import numpy as np
import matplotlib.pyplot as plt
import datetime
tf.reset_default_graph()
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32, shape=[None, 28,28,1])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
def conv2d(x, W):
return tf.nn.conv2d(input=x, filter=W, strides=[1,1,1,1], padding='SAME')
def max_pool__2x2(x):
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
W_conv1 = tf.Variable(tf.truncated_normal([5,5,1,32], stddev=0.1))
b_conv1 = tf.Variable(tf.constant(0.1, shape=[32]))
h_conv1 = conv2d(x, W_conv1) + b_conv1
h_conv1 = tf.nn.relu(h_conv1)
h_pool1 = max_pool__2x2(h_conv1)
W_conv2 = tf.Variable(tf.truncated_normal([5,5,32,64], stddev=0.1))
b_conv2 = tf.Variable(tf.constant(0.1, shape=[64]))
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2)) + b_conv2
h_pool2 = max_pool__2x2(h_conv2)
W_fc1 = tf.Variable(tf.truncated_normal([7*7*64, 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024]))
h_pool2_flat = tf.reshape(h_pool2, [-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1, shape=[10]))
y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
crossEntropyLoss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y))
trainStep = tf.train.AdamOptimizer().minimize(crossEntropyLoss)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
batch_size = 50
with tf.device('/gpu:1'):
for i in range(1000):
batch = mnist.train.next_batch(batch_size)
trainInputs = batch[0].reshape([batch_size, 28,28,1])
trainLabels = batch[1]
if i%100 == 0:
trainAccuracy = accuracy.eval(session=sess, feed_dict={x:trainInputs, y_:trainLabels, keep_prob:1.0})
print("step %d, training accuracy %g" % (i, trainAccuracy))
trainStep.run(session=sess, feed_dict={x: trainInputs, y_: trainLabels, keep_prob: 0.5})