get_data.py
import torch
import torchvision
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4), #先四周填充0,在吧图像随机裁剪成32*32
transforms.RandomHorizontalFlip(), #图像一半的概率翻转,一半的概率不翻转
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) #训练数据集
trainloader = DataLoader(trainset, batch_size=100, shuffle=True)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False)
show_test_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=False)
net.py
from torch import nn
class CNN(nn.Module):
def __init__(self):
super().__init__() # 3,32,32
self.layer1 = nn.Sequential(
nn.Conv2d(in_channels = 3,out_channels = 16,kernel_size = 3,stride = 1,padding = 1), #16,32,32
nn.BatchNorm2d(16),
nn.ReLU(),
)
self.layer2 = nn.Sequential(
nn.Conv2d(in_channels = 16, out_channels = 48, kernel_size = 3, stride = 1, padding = 1), #48,32,32
nn.BatchNorm2d(48),
nn.ReLU(),
nn.MaxPool2d(kernel_size = 2, stride = 2), # 48,16,16
)
self.layer3 = nn.Sequential(
nn.Conv2d(in_channels = 48, out_channels = 96, kernel_size = 3, stride = 1, padding = 1), #96,16,16
nn.BatchNorm2d(96),
nn.ReLU(),
nn.MaxPool2d(kernel_size = 2, stride = 2), # 96,8,8
)
self.layer4 = nn.Sequential(
nn.Conv2d(in_channels = 96, out_channels = 192, kernel_size = 3, stride = 1, padding = 1), # 192,8,8
nn.BatchNorm2d(192),
nn.ReLU(),
nn.MaxPool2d(kernel_size = 2, stride = 2), # 192,4,4
)
self.layer5 = nn.Sequential(
nn.Conv2d(in_channels = 192, out_channels = 256, kernel_size = 3, stride = 1, padding = 1), # 256,4,4
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(kernel_size = 2, stride = 2), # 256,2,2
)
self.fc = nn.Sequential(
nn.Linear(256*2*2, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Linear(256, 64),
nn.BatchNorm1d(64),
nn.ReLU(),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
x = x.reshape(x.shape[0],-1)
x = self.fc(x)
return x
train.py
import torch
from torch import nn, optim
from torch.autograd import Variable
import random
from mmcv import ProgressBar
from normalnet import CNN
from get_data import trainloader, testloader, testset,trainset,batch_size
from tensorboardX import SummaryWriter
writer = SummaryWriter()
device = torch.device('cuda:5')
model = CNN()
model.to(device)
model.train()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())
def get_ACC_test():
model.eval()
total_num = len(testset)
correct = 0
for item in testloader:
batch_imgs, batch_labels = item
batch_imgs = Variable(batch_imgs).to(device)
batch_labels = Variable(batch_labels).to(device)
out = model(batch_imgs)
_, pred = torch.max(out.data, 1)
correct += torch.sum(pred == batch_labels)
correct = correct.data.item()
acc = correct / total_num
print('test set, correct:{}, ACC:{}'.format(correct, acc))
model.train()
return acc
def get_ACC_train():
model.eval()
total_num = len(trainset)
correct = 0
for item in trainloader:
batch_imgs, batch_labels = item
batch_imgs = Variable(batch_imgs).to(device)
batch_labels = Variable(batch_labels).to(device)
out = model(batch_imgs)
_, pred = torch.max(out.data, 1)
correct += torch.sum(pred == batch_labels)
correct = correct.data.item()
acc = correct / total_num
print('train set, correct:{}, ACC:{}'.format(correct, acc))
model.train()
return acc
for epoch in range(10):
cnt = 1
sum_loss = 0
bar = ProgressBar(len(trainset) / batch_size)
for item in trainloader:
batch_input, batch_label = item
batch_input = Variable(batch_input).to(device)
batch_label = Variable(batch_label).to(device)
out = model(batch_input)
loss = criterion(out, batch_label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print_loss = loss.data.item()
sum_loss += print_loss
cnt += 1
bar.update()
ave_loss = sum_loss / cnt
print('epoch:{},loss:{}'.format(epoch, ave_loss))
acc_test = get_ACC_test()
acc_train = get_ACC_train()
print('ACC train:{}, ACC test:{}'.format(acc_train,acc_test))
writer.add_scalars('CIFAR10', {'acc_test': acc_test, 'acc_train': acc_train}, epoch)
print()
eval.py
import random
from torch.autograd import Variable
from get_data import show_test_set,testset
import torch
device = torch.device('cuda')
model = torch.load('model').to(device)
model.eval()
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
while True:
index = random.randint(0,len(testset))
item = testset[index]
img,label = item
img = img.unsqueeze(0)
img = Variable(img).to(device)
out = model(img)
_, pred = torch.max(out.data, 1)
print('predict:{},label:{}'.format(classes[pred.data.item()] ,classes[label] ))
item_show = show_test_set[index]
img_show = item_show[0]
img_show.show()
go_on = input('go on:')
if (go_on == 'n'):
break