POJ —— 二分

Aggressive cows
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 4898 Accepted: 2415

Description

Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stalls are located along a straight line at positions x1,...,xN (0 <= xi <= 1,000,000,000). 

His C (2 <= C <= N) cows don't like this barn layout and become aggressive towards each other once put into a stall. To prevent the cows from hurting each other, FJ want to assign the cows to the stalls, such that the minimum distance between any two of them is as large as possible. What is the largest minimum distance?

Input

* Line 1: Two space-separated integers: N and C 

* Lines 2..N+1: Line i+1 contains an integer stall location, xi

Output

* Line 1: One integer: the largest minimum distance

Sample Input

5 3
1
2
8
4
9

Sample Output

3

Hint

OUTPUT DETAILS: 

FJ can put his 3 cows in the stalls at positions 1, 4 and 8, resulting in a minimum distance of 3. 

Huge input data,scanf is recommended.

Source

题意是有n间牛棚,在a数组中告诉你他们的位置,有M头牛,你要把他们放得尽量远,输出最小间隔的数量

思路就是我去对最小距离d二分。calc(d)表示安排牛的位置使得最近的两头牛都小于d,也就是所有的两牛间距小于d。

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <map>
#include <string>
#include <stack>
#include <cctype>
#include <vector>
#include <queue>
#include <set>
#include <utility>
#include <cassert>
using namespace std;
///#define Online_Judge
#define outstars cout << "***********************" << endl;
#define clr(a,b) memset(a,b,sizeof(a))
#define lson l , mid  , rt << 1
#define rson mid + 1 , r , rt << 1 | 1
#define mk make_pair
#define FOR(i , x , n) for(int i = (x) ; i < (n) ; i++)
#define FORR(i , x , n) for(int i = (x) ; i <= (n) ; i++)
#define REP(i , x , n) for(int i = (x) ; i > (n) ; i--)
#define REPP(i ,x , n) for(int i = (x) ; i >= (n) ; i--)
const int MAXN = 100000 + 5;
const int MAXS = 10000 + 50;
const int sigma_size = 26;
const long long LLMAX = 0x7fffffffffffffffLL;
const long long LLMIN = 0x8000000000000000LL;
const int INF = 0x7fffffff;
const int IMIN = 0x80000000;
const int inf = 1 << 30;
#define eps 1e-8
const long long MOD = 1000000000 + 7;
const int mod = 100000;
typedef long long LL;
const double PI = acos(-1.0);
typedef double D;
typedef pair<int , int> pii;
#define Bug(s) cout << "s = " << s << endl;
///#pragma comment(linker, "/STACK:102400000,102400000")
int n , m ,a[MAXN];
bool calc(int d)
{
    int las = 0;
    for(int i = 1 ; i < m ; i++)
    {
        int cur = las + 1;
        while(cur < n && a[cur] - a[las] < d)
        {
            cur++;
        }
        if(cur == n)return false;
        las = cur;
    }
    return true;
}
void solve()
{
    sort(a , a + n);
    int L = 0 , R = inf;
    while(R - L > 1)
    {
        int mid = (L + R) >> 1;
        if(calc(mid))L = mid;
        else R = mid;
    }
    printf("%d\n" , L);
}
int main()
{
    while(~scanf("%d%d" , &n , &m))
    {
        for(int i = 0  ; i < n ; i++)
        {
            scanf("%d" , &a[i]);
        }
        solve();
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值