【tensorflow】tf.name_scope和tf.variable_scope以及tf.variable和tf.get_variable区别

本文深入解析了TensorFlow中tf.name_scope()和tf.variable_scope()的作用与区别,通过实例展示了如何利用这两个作用域进行变量共享及流程图可视化,特别强调了在变量重用时的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.name_scope()和tf.variable_scope()是两个作用域,一般与两个创建、调用变量的函数tf.variable() 和tf.get_variable()搭配使用。它们搭配在一起的两个常见用途:1)变量共享,2)tensorboard画流程图时为了可视化封装变量。

tf.name_scope(名字范围)下可以有相同的变量名,但仅限tf.Variable的变量

tf.variable_scope(变量范围)下可以有相同的变量名,tf.get_variable(变量共享)和tf.Variable的变量都支持。

 

样例1:

import tensorflow as tf

with tf.variable_scope('v_scope') as scope1:
    Weights1 = tf.get_variable('Weights', shape=[2,3])
    bias1 = tf.get_variable('bias', shape=[3])

# 下面来共享上面已经定义好的变量
# note: 在下面的 scope 中的变量必须已经定义过了,才能设置 reuse=True,否则会报错
with tf.variable_scope('v_scope', reuse=True) as scope2:
    Weights2 = tf.get_variable('Weights')

# 下面来共享上面已经定义好的变量
# note: 在下面的 scope 中的变量必须已经定义过了,才能设置 reuse=True,否则会报错
with tf.variable_scope('v_scope', reuse=True) as scope2:
    Weights3 = tf.get_variable('Weights')

print (Weights1.name)
print (Weights2.name)
print (Weights3.name)

输出:

v_scope/Weights:0
v_scope/Weights:0
v_scope/Weights:0

 

样例2

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
 
with tf.variable_scope('V1'):
	a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.variable_scope('V2'):
	a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	print a1.name
	print a2.name
	print a3.name
	print a4.name

输出:

V1/a1:0
V1/a2:0
V2/a1:0
V2/a2:0

 

样例2

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
 
with tf.name_scope('V1'):
	a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
	a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	print a1.name
	print a2.name
	print a3.name
	print a4.name

报错:Variable a1 already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:

换成下面的代码就可以执行:

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
 
with tf.name_scope('V1'):
	# a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
	# a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	# print a1.name
	print a2.name
	# print a3.name
	print a4.name

输出:

V1/a2:0
V2/a2:0

转载自:https://blog.youkuaiyun.com/uestc_c2_403/article/details/72328815

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值