数学与软件工程那些令人惊讶的相似性

本文作者Alice Zheng分享了她对数学的顿悟,揭示数学与软件工程之间的惊人相似性。数学被看作是人类创造的工具,而非宇宙真理,其设计原理与软件工程中的对象层级设计相呼应。线性代数、抽象代数和实数系统的构建揭示了数学的层次结构,而这种结构与软件工程的抽象和继承概念不谋而合。理解数学设计原则有助于深化对这两个领域的认识,并激发创新思维。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在我读研究生第一年,我对于数学有了一次顿悟,这改变了我对整个机器学习领域的看法与思路。当时我选择研究的方向是机器学习。这是一个交叉学科的领域,结合了计算机科学、统计学和其他很多的数学学科,比如优化方法和线性代数。需要学的内容非常多,所有的研一的学生都在努力地消化吸收这些海量的概念。

一天晚上,我坐在办公室里试图去对线性代数有所悟。虽然我有一本很好的教材—基尔伯特·斯特朗所著的《线性代数入门》—作为我的引导,但我一直没办法取得进展。我看着各种各样的定义,特征分解、乔丹正规型、矩阵翻转等等,就在想:“为什么?为什么这些都看着那么诡异?为什么翻转要这么定义?真正地仔细想想,为什么所有这些矩阵运算都用现在这个方式来定义?”

就在我无望地盯着满屏的数学符号的时候,突然脑海里一道灵光闪现。我意识到:数学是一种设计!在此之前,我一直把数学当成一种宇宙真理一样的学习。它完美超然、且几乎凡人所不可知。但在那夜之后,我意识到数学也仅仅是一个人类创建的工具。数学是被设计出来的,就像软件编程是被设计出来的一样,也使用了很多类似的设计原理。这些原理也许不那么明显,但都是可以被理解的。从那个时刻起,对我而言数学从不可知变为合理

内容概要:该论文探讨了一种基于粒子群优化(PSO)的STAR-RIS辅助NOMA无线通信网络优化方法。STAR-RIS作为一种新型可重构智能表面,能同时反射和传输信号,传统仅能反射的RIS不同。结合NOMA技术,STAR-RIS可以提升覆盖范围、用户容量和频谱效率。针对STAR-RIS元素众多导致获取完整信道状态信息(CSI)开销大的问题,作者提出一种在不依赖完整CSI的情况下,联合优化功率分配、基站波束成形以及STAR-RIS的传输和反射波束成形向量的方法,以最大化总可实现速率并确保每个用户的最低速率要求。仿真结果显示,该方案优于STAR-RIS辅助的OMA系统。 适合人群:具备一定无线通信理论基础、对智能反射面技术和非正交多址接入技术感兴趣的科研人员和工程师。 使用场景及目标:①适用于希望深入了解STAR-RISNOMA结合的研究者;②为解决无线通信中频谱资源紧张、提高系统性能提供新的思路和技术手段;③帮助理解PSO算法在无线通信优化问题中的应用。 其他说明:文中提供了详细的Python代码实现,涵盖系统参数设置、信道建模、速率计算、目标函数定义、约束条件设定、主优化函数设计及结果可视化等环节,便于读者理解和复现实验结果。此外,文章还对比了PSO其他优化算法(如DDPG)的区别,强调了PSO在不需要显式CSI估计方面的优势。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值