Binary search is a famous question in algorithm.
For a given sorted array (ascending order) and a target number, find the first index of this number in O(log n) time complexity.
If the target number does not exist in the array, return -1.
Example
If the array is [1, 2, 3, 3, 4, 5, 10], for given target 3, return 2.
二分查找!!!
总结一下 binary search 要注意的地方:
循环结束的判定条件: 用start < end - 1, 而不用 while(start <= end), 这样可以避免特请情况下的死循环, 比如当 start = 1, end = 2, 那么 mid = 1 + (2 - 1)/2 = 1. 如果下一步令 start = mid, 则一直死循环了
mid的赋值用 mid = start + (end - start) / 2, 而不用 mid = (start + end)/2, 如此一来可以避免因为 start和end都比较大, 相加大于 Integer.MAX_VALUE时的整数溢出
参考的代码里巧妙的用了 if(target == array[mid]) {end = mid}, 这样就让代码在已经检测到target的情况下继续往index小的方向查询.
class Solution {
/**
* @param nums: The integer array.
* @param target: Target to find.
* @return: The first position of target. Position starts from 0.
*/
public int binarySearch(int[] nums, int target) {
if (nums == null || nums.length == 0) {
return -1;
}
int start = 0, end = nums.length - 1;
while (start + 1 < end) {
int mid = start + (end - start) / 2;
if (nums[mid] == target) {
end = mid;
} else if (nums[mid] < target) {
start = mid;
} else {
end = mid;
}
}
if (nums[start] == target) {
return start;
}
if (nums[end] == target) {
return end;
}
return -1;
}
}