推理指令如下:
python scripts/amg.py --checkpoint sam_vit_l_0b3195.pth --model-type vit_l --input D:\SAM\pics\ --output D:\SAM\pics\ --device cpu --box-nms-thresh 0.5 --crop-nms-thresh 0.5
pics是文件夹,把要分割的图片全部放到文件里面即可
具体的修改流程如下:
第1步:修改amg.py中的def write_masks_to_folder函数,修改后函数如下
def write_masks_to_folder(masks: List[Dict[str, Any]], path: str, image: np.ndarray) -> None:
header = "id,area,bbox_x0,bbox_y0,bbox_w,bbox_h,point_input_x,point_input_y,predicted_iou,stability_score,crop_box_x0,crop_box_y0,crop_box_w,crop_box_h" # noqa
metadata = [header]
overlay = image.copy()
for i, mask_data in enumerate(masks):
mask = mask_data["segmentation"]
filename = f"{i}.png"
cv2.imwrite(os.path.join(path, filename), mask * 255)
# Generate a random color for each mask
color = np.random.randint(0, 255, (3,)).tolist()
overlay[mask] = image[mask] * 0.5 + np.array(color) * 0.5
mask_metadata = [
str(i),
str(mask_data["area"]),
*[str(x) for x in mask_data["bbox"]],
*[str(x) for x in mask_data["point_coords"][0]],
str(mask_data["predicted_iou"]),
str(mask_data["stability_score"]),
*[str(x) for x in mask_data["crop_box"]],
]
row = ",".join(mask_metadata)
metadata.append(row)
# Save the overlay image
overlay_filename = os.path.join(path, "overlay.png")
cv2.imwrite(overlay_filename, cv2.cvtColor(overlay, cv2.COLOR_RGB2BGR))
metadata_path = os.path.join(path, "metadata.csv")
with open(metadata_path, "w") as f:
f.write("\n".join(metadata))
return
第2步修改amg.py中的main函数,修改后的函数如下:
def main(args: argparse.Namespace) -> None:
print("Loading model...")
sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint)
_ = sam.to(device=args.device)
output_mode = "coco_rle" if args.convert_to_rle else "binary_mask"
amg_kwargs = get_amg_kwargs(args)
generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode, **amg_kwargs)
if not os.path.isdir(args.input):
targets = [args.input]
else:
targets = [
f for f in os.listdir(args.input) if not os.path.isdir(os.path.join(args.input, f))
]
targets = [os.path.join(args.input, f) for f in targets]
os.makedirs(args.output, exist_ok=True)
for t in targets:
print(f"Processing '{t}'...")
image = cv2.imread(t)
if image is None:
print(f"Could not load '{t}' as an image, skipping...")
continue
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert to RGB for processing
masks = generator.generate(image)
base = os.path.basename(t)
base = os.path.splitext(base)[0]
save_base = os.path.join(args.output, base)
if output_mode == "binary_mask":
os.makedirs(save_base, exist_ok=True) # Allow existing directories
write_masks_to_folder(masks, save_base, image) # Pass the original image here
else:
save_file = save_base + ".json"
with open(save_file, "w") as f:
json.dump(masks, f)
print("Done!")
最后运行完毕就生成overlay图片了