<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>流体动力学Canvas特效</title>
<style>
body {
margin: 0;
overflow: hidden;
background: #000;
}
canvas {
display: block;
}
.info {
position: absolute;
bottom: 10px;
right: 10px;
color: white;
font-family: Arial, sans-serif;
font-size: 12px;
opacity: 0.5;
}
</style>
</head>
<body>
<canvas id="canvas"></canvas>
<script>
const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
// 设置canvas大小为窗口大小
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
// 流体粒子数量
const PARTICLE_COUNT = 150;
// 粒子数组
const particles = [];
// 粒子类
class Particle {
constructor() {
this.x = Math.random() * canvas.width;
this.y = Math.random() * canvas.height;
this.size = Math.random() * 3 + 1;
this.density = Math.random() * 30 + 1;
this.color = `hsl(${Math.random() * 60 + 180}, 100%, 50%)`;
this.vx = Math.random() * 2 - 1;
this.vy = Math.random() * 2 - 1;
}
// 绘制粒子
draw() {
ctx.beginPath();
ctx.arc(this.x, this.y, this.size, 0, Math.PI * 2);
ctx.closePath();
ctx.fillStyle = this.color;
ctx.fill();
}
// 更新粒子位置
update() {
// 边界检测
if (this.x < 0 || this.x > canvas.width) {
this.vx = -this.vx;
}
if (this.y < 0 || this.y > canvas.height) {
this.vy = -this.vy;
}
// 更新位置
this.x += this.vx;
this.y += this.vy;
// 添加一些随机运动
if (Math.random() < 0.05) {
this.vx += (Math.random() - 0.5) * 0.5;
this.vy += (Math.random() - 0.5) * 0.5;
}
// 限制速度
const maxSpeed = 2;
const speed = Math.sqrt(this.vx * this.vx + this.vy * this.vy);
if (speed > maxSpeed) {
this.vx = (this.vx / speed) * maxSpeed;
this.vy = (this.vy / speed) * maxSpeed;
}
}
}
// 初始化粒子
function init() {
for (let i = 0; i < PARTICLE_COUNT; i++) {
particles.push(new Particle());
}
}
// 连接相近的粒子
function connectParticles() {
for (let a = 0; a < particles.length; a++) {
for (let b = a; b < particles.length; b++) {
const dx = particles[a].x - particles[b].x;
const dy = particles[a].y - particles[b].y;
const distance = Math.sqrt(dx * dx + dy * dy);
if (distance < 100) {
const opacity = 1 - distance / 100;
ctx.strokeStyle = `rgba(100, 200, 255, ${opacity})`;
ctx.lineWidth = 0.5;
ctx.beginPath();
ctx.moveTo(particles[a].x, particles[a].y);
ctx.lineTo(particles[b].x, particles[b].y);
ctx.stroke();
}
}
}
}
// 动画循环
function animate() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
// 更新并绘制所有粒子
for (const particle of particles) {
particle.update();
particle.draw();
}
// 连接粒子
connectParticles();
requestAnimationFrame(animate);
}
// 窗口大小改变时调整canvas大小
window.addEventListener('resize', function() {
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
});
// 鼠标互动
canvas.addEventListener('mousemove', function(event) {
const mouseX = event.x;
const mouseY = event.y;
for (const particle of particles) {
const dx = mouseX - particle.x;
const dy = mouseY - particle.y;
const distance = Math.sqrt(dx * dx + dy * dy);
if (distance < 100) {
const forceDirectionX = dx / distance;
const forceDirectionY = dy / distance;
const force = (100 - distance) / 100;
particle.vx -= forceDirectionX * force * 0.2;
particle.vy -= forceDirectionY * force * 0.2;
}
}
});
// 启动动画
init();
animate();
</script>
</body>
</html>流体动力学运动Canvas特效