1.合并数据集
pandas.merge可根据一个或多个键将不同DataFrame中的行连接起来
pandas.concat可以沿着一条轴将多个对象堆叠到一起
实例方法combine_first可以将重复数据编接在一起,用一个对象的值填充另一个对象中的缺失值
2.数据库风格的DataFrame合并
df1=DataFrame({'key':['b','b','a','c','a','a','b'],
'data1':range(7)})
df2=DataFrame({'key':['a','b','d'],
'data2':range(3)})
print df1
print df2
print pd.merge(df1,df2)
print pd.merge(df1,df2,on='key')
结果为:
data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 a
6 6 b
data2 key
0 0 a
1 1 b
2 2 d
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0
这是一种多对1的合并。起初,我并没有指明要用哪个列进行连接。如果没有指定,merge就会将重叠列的列名当做键。不过最好显式的指定下
如果两个对象的列名不同,也可以分别进行指定
df3=DataFrame({'lkey':['b','b','a','c','a','a','b'],
'data1':range(7)})
df4=DataFrame({'rkey':['a','b','d'],
'data2':range(3)})
print pd.merge(df3,df4,left_on='lkey',right_on='rkey')
结果为:
data1 lkey data2 rkey
0 0 b 1 b
1 1 b 1 b
2 6 b 1 b
3 2 a 0 a
4 4 a 0 a
5 5 a 0 a
默认情况下,merge做的是“inner”连接,结果中的键是交集。其它方式还有“left”,“right”以及“outer”。外连接求取的是键的并集,组合了左连接和右连接的效果
print pd.merge(df1,df2,how='outer')
结果为:
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0
6 3 c NaN
7 NaN d 2
多对多的合并操作非常简单,无需额外的工作
df3=DataFrame({'key':['b','b','a','c','a','b'],
'data1':range(6)})
df4=DataFrame({'key':['a','b','a','b','d'],
'data2':range(5)})
print pd.merge(df3,df4,on='key',how='left')
结果为:
data1 key data2
0 0 b 1
1 0 b 3
2 1 b 1
3 1 b 3
4 2 a 0
5 2 a 2
6 3 c NaN
7 4 a 0
8 4 a 2
9 5 b 1
10 5 b 3
多对多连接产生的是行的笛卡尔积。由于左边的DataFrame有3个“b”行,右边的有2个,所以最终结果中就有6个“b”行
print pd.merge(df3,df4,how='inner')
结果为:
data1 key data2
0 0 b 1
1 0 b 3
2 1 b 1
3 1 b 3
4 5 b 1
5 5 b 3
6 2 a 0
7 2 a 2
8 4 a 0
9 4 a 2
要根据多个键进行合并,传入一个由列名组成的列表即可
left=DataFrame({'key1':['foo','foo','bar'],
'key2':['one','two','one'],
'lval':[1,2,3]})
right=DataFrame({'key1':['foo','foo','bar','bar'],
'key2':['one','one','one','two'],
'rval':[4,5,6,7]})
print pd.merge(left,right,on=['key1','key2'],how='outer')
结果为:
key1 key2 lval rval
0 foo one 1 4
1 foo one 1 5
2 foo two 2 NaN
3 bar one 3 6
4 bar two NaN 7
对于合并运算需要考虑的最后一个问题是对重复列名的处理。虽然你可以手工处理列名重叠问题,但merge有一个更实用suffixes选项,用于指定附加到左右两个DataFrame对象的重叠列名上的字符串
print pd.merge(left,right,on='key1')
print pd.merge(left,right,on='key1',suffixes=('_left','_right'))
结果为:
key1 key2_x lval key2_y rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7
key1 key2_left lval key2_right rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7
3.索引上的合并
有时候,DataFrame中的连接键位于其索引中。在这种情况下,你可以传入left_index=True或right_index=True(或两个都传)以说明索引应该被用作连接键
left1=DataFrame({'key':['a','b','a','a','b','c'],
'value':range(6)})
right1=DataFrame({'group_val':[3.5,7]},index=['a','b'])
print left1
print right1
print pd.merge(left1,right1,left_on='key',right_index=True)
结果为:
key value
0 a 0
1 b 1
2 a 2
3 a 3
4 b 4
5 c 5
group_val
a 3.5
b 7.0
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0
可以通过外连接的方式得到它们的并集
print pd.merge(left1,right1,left_on='key',right_index=True,how='outer')
结果为:
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0
5 c 5 NaN
对于层次化索引的数据,事情就有点复杂了。这种情况下,你必须以列表的形式指明用作合并键的多个列
lefth=DataFrame({'key1':['Ohio','Ohio','Ohio','Nevada','Nevada'],
'key2':[2000,2001,2002,2001,2002],
'data':np.arange(5)})
righth=DataFrame(np.arange(12).reshape((6,2)),
index=[['Nevada','Nevada','Ohio','Ohio','Ohio','Ohio'],
[2001,2000,2000,2000,2001,2002]],
columns=['event1','event2'])
print lefth
print righth
print pd.merge(lefth,righth,left_on=['key1','key2'],right_index=True)
结果为:
data key1 key2
0 0 Ohio 2000
1 1 Ohio 2001
2 2 Ohio 2002
3 3 Nevada 2001
4 4 Nevada 2002
event1 event2
Nevada 2001 0 1
2000 2 3
Ohio 2000 4 5
2000 6 7
2001 8 9
2002 10 11
data key1 key2 event1 event2
0 0 Ohio 2000 4 5
0 0 Ohio 2000 6 7
1 1 Ohio 2001 8 9
2 2 Ohio 2002 10 11
3 3 Nevada 2001 0 1
同时使用合并双方的索引也没有问题
left2=DataFrame([[1,2],[3,4],[5,6]],index=['a','c','e'],columns=['Ohio','Nevada'])
right2=DataFrame([[7,8],[9,10],[11,12],[13,14]],index=['b','c','d','e'],columns=['Missouri','Alabama'])
print left2
print right2
print pd.merge(left2,right2,how='outer',left_index=True,right_index=True)
结果为:
Ohio Nevada
a 1 2
c 3 4
e 5 6
Missouri Alabama
b 7 8
c 9 10
d 11 12
e 13 14
Ohio Nevada Missouri Alabama
a 1 2 NaN NaN
b NaN NaN 7 8
c 3 4 9 10
d NaN NaN 11 12
e 5 6 13 14
DataFrame还有一个join实例方法,它能够更为方便地实现按索引合并。上面的那个例子中,我们可以编写成
print left2.join(right2,how='outer')
结果为:
Ohio Nevada Missouri Alabama
a 1 2 NaN NaN
b NaN NaN 7 8
c 3 4 9 10
d NaN NaN 11 12
e 5 6 13 14
最后,对于简单的索引合并,你还可以向join传入一组DataFrame
another=DataFrame([[7,8],[9,10],[11,12],[16,17]],index=['a','c','e','f'],columns=['New York','Oregon'])
print left2.join([right2,another])
结果为:
Ohio Nevada Missouri Alabama New York Oregon
a 1 2 NaN NaN 7 8
c 3 4 9 10 9 10
e 5 6 13 14 11 12
4.轴向连接
Numpy有一个用于合并原始Numpy数组的concatenation函数
arr=np.arange(12).reshape((3,4))
print arr
print np.concatenate([arr,arr],axis=1)
结果为:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[ 0 1 2 3 0 1 2 3]
[ 4 5 6 7 4 5 6 7]
[ 8 9 10 11 8 9 10 11]]
对于pandas对象,带有标签的轴使你能够进一步推广数组的连接对象。你还需要考虑以下东西:
a.如果各对象其它轴上的索引不同,那些轴是做并集还是交集
b.结果对象中的分组需要各不相同吗
c.用于连接的轴重要吗
pandas的concat函数提供了一种能够解决这些问题的可靠方式。假设有三个没有重叠索引的Series
s1=Series([0,1],index=['a','b'])
s2=Series([2,3,4],index=['c','d','e'])
s3=Series([5,6],index=['f','g'])
print pd.concat([s1,s2,s3])
结果为:
a 0
b 1
c 2
d 3
e 4
f 5
g 6
dtype: int64
默认情况下,concat是在axis=0上工作的,最终产生一个新的Series。如果传入axis=1,则结果就会变成一个DataFrame(axis=1是列)
print pd.concat([s1,s2,s3],axis=1)
结果为:
0 1 2
a 0 NaN NaN
b 1 NaN NaN
c NaN 2 NaN
d NaN 3 NaN
e NaN 4 NaN
f NaN NaN 5
g NaN NaN 6
这种情况下,另外一条轴上没有重叠,从索引的有序并集(外连接)上就可以看出来。传入join=‘inner’即可得到它们的交集
s4=pd.concat([s1*5,s3])
print pd.concat([s1,s4],axis=1)
print pd.concat([s1,s4],axis=1,join='inner')
结果为:
0 1
a 0 0
b 1 5
f NaN 5
g NaN 6
0 1
a 0 0
b 1 5
你可以通过join_axes指定要在其它轴上使用的索引
print pd.concat([s1,s4],axis=1,join_axes=[['a','c','b','e']])
结果为:
0 1
a 0 0
c NaN NaN
b 1 5
e NaN NaN
有个问题,参与连接的片段在结果中区分不开。假设你想在连接轴上创建一个层次化索引。使用keys参数即可达到这个目的
result=pd.concat([s1,s2,s3],keys=['one','two','three'])
print result
print result.unstack()
结果为:
one a 0
b 1
two c 2
d 3
e 4
three f 5
g 6
dtype: int64
a b c d e f g
one 0 1 NaN NaN NaN NaN NaN
two NaN NaN 2 3 4 NaN NaN
three NaN NaN NaN NaN NaN 5 6
如果沿着axis=1对Series进行合并,则keys就会成为DataFrame的列头
print pd.concat([s1,s2,s3],axis=1,keys=['one','two','three'])
结果为:
one two three
a 0 NaN NaN
b 1 NaN NaN
c NaN 2 NaN
d NaN 3 NaN
e NaN 4 NaN
f NaN NaN 5
g NaN NaN 6
同样的逻辑对DataFrame对象也是一样http://write.blog.youkuaiyun.com/postedit/51682305
df5=DataFrame(np.arange(6).reshape(3,2),index=['a','b','c'],columns=['one','two'])
df6=DataFrame(5+np.arange(4).reshape(2,2),index=['a','c'],columns=['three','four'])
print pd.concat([df5,df6],axis=1,keys=['level1','level2'])
结果为:
level1 level2
one two three four
a 0 1 5 6
b 2 3 NaN NaN
c 4 5 7 8
如果传入的不是列表而是一个字典,则字典的键就会被当做keys选项的值
print pd.concat({'level1':df5,'level2':df6},axis=1)
结果为:
level1 level2
one two three four
a 0 1 5 6
b 2 3 NaN NaN
c 4 5 7 8
此外还有两个用于管理层次化索引创建方式的参数,见下表
print pd.concat([df5,df6],axis=1,keys=['level1','level2'],names=['upper','lower'])
结果为:
upper level1 level2
lower one two three four
a 0 1 5 6
b 2 3 NaN NaN
c 4 5 7 8
最后一个需要考虑的问题就是,跟当前分析工作无关的DataFrame行索引。传入ignore_index=True即可
df7=DataFrame(np.random.randn(3,4),columns=['a','b','c','d'])
df8=DataFrame(np.random.randn(2,3),columns=['b','d','a'])
print df7
print df8
print pd.concat([df7,df8],ignore_index=True)
结果为:
a b c d
0 -0.083578 0.106970 -0.534075 0.324900
1 -0.631331 0.138009 0.439823 0.440392
2 0.757486 -0.634111 0.522510 -0.687599
b d a
0 -1.497807 -0.033387 -0.137402
1 -0.308111 1.935971 1.266464
a b c d
0 -0.083578 0.106970 -0.534075 0.324900
1 -0.631331 0.138009 0.439823 0.440392
2 0.757486 -0.634111 0.522510 -0.687599
3 -0.137402 -1.497807 NaN -0.033387
4 1.266464 -0.308111 NaN 1.935971