这个示例很简单,就是从cifar10中读取数据集,通过卷积神经网络进行图像识别
输入数据的shape
x_train.shape (50000, 32, 32, 3)
y_train.shape (50000, 10)
神经网络结构:
________________________________________________________________________________
Layer (type) Output Shape Param #
================================================================================
conv2d_1 (Conv2D) (None, 32, 32, 32) 896
________________________________________________________________________________
activation_1 (Activation) (None, 32, 32, 32) 0
________________________________________________________________________________
conv2d_2 (Conv2D) (None, 30, 30, 32) 9248
________________________________________________________________________________
activation_2 (Activation) (None, 30, 30, 32) 0
________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 15, 15, 32) 0
________________________________________________________________________________
dropout_1 (Dropout) (None, 15, 15, 32) 0
________________________________________________________________________________
conv2d_3 (Conv2D) (None, 15, 15, 64) 18496
________________________________________________________________________________
activation_3 (Activation) (None, 15, 15, 64) 0
________________________________________________________________________________
conv2d_4 (Conv2D) (None, 13, 13, 64) 36928
________________________________________________________________________________
activation_4 (Activation) (None, 13, 13, 64) 0
________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 6, 6, 64) 0
________________________________________________________________________________
dropout_2 (Dropout) (None, 6, 6, 64) 0
________________________________________________________________________________
flatten_1 (Flatten) (None, 2304) 0
________________________________________________________________________________
dense_1 (Dense) (None, 512) 1180160
________________________________________________________________________________
activation_5 (Activation) (None, 512) 0
________________________________________________________________________________
dropout_3 (Dropout) (None, 512) 0
________________________________________________________________________________
dense_2 (Dense) (None, 10) 5130
________________________________________________________________________________
activation_6 (Activation) (None, 10) 0
================================================================================
Total params: 1,250,858
Trainable params: 1,250,858
Non-trainable params: 0
________________________________________________________________________________
代码同时演示了 ImageDataGenerator 的使用
——————————————————————
总目录