CRISP-DM (cross-industry standard process for data mining)跨行业数据挖掘过程标准

CRISP-DM是一种广泛应用于数据挖掘的标准过程模型,涵盖了业务理解、数据理解、数据准备、建立模型、评估模型和结果部署六个阶段。它强调从理解业务需求到实施的完整过程,相较于SEMMA更注重项目管理的全面性。本文深入介绍了CRISP-DM的每个阶段及其在数据挖掘项目中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CRIP-DM+SEMMA

CRISP-DM (cross-industry standard process for data mining),即为“跨行业数据挖掘过程标准"。

 

长期以来,随着数据挖掘市场的发展和成熟,由不同的组织机构提出过很多的方法论,如CRISP-DM、SEMMA、5A等,其中CRISP-DM、SEMMA是应用最为广泛。CRISP-DM (cross-industry standard process for data mining),即为“跨行业数据挖掘过程标准"。此KDD过程模型于1999年欧盟机构联合起草. 通过近几年的发展,CRISP-DM 模型在各种KDD过程模型中占据领先位置,采用量达到近60%。排在其后的是由SAS公司提出的SEMMA。SEMMA更偏重于数据挖掘的建模过程,与SAS的EM工具进行整合,其模型管理部署部分则体现在另外的工具套件中。CRISP-DM是从一个数据挖掘项目执行的角度谈方法论,CRISP- DM的考虑的范围比SEMMA 要大。CRISP-DM强调,数据挖掘不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。因此,从一个项目的管理实施完整流程来说,CRISP-DM更适用一些,本文后续主要以CRISP-DM为主进行详细介绍。

 

 

在过去几年,随着信息化技术的高速发展,数据逐渐变为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值