第三课:链表

本文介绍多种链表操作方法,包括反转链表、寻找公共部分、判断回文链表、链表分区、复制含随机指针的链表及查找相交链表等。提供多种实现方案并详细解释其原理。

1.反转单向链表

	public static class Node {
		public int value;
		public Node next;

		public Node(int data) {
			this.value = data;
		}
	}

	public static Node reverseList(Node head) {
		Node pre=null;
		Node next=null;
		while(head!=null){
			next=head.next;
			head.next=pre;
			pre=head;
			head=next;
		}
		return pre;//注意return的是pre
	}

2.反转双向向链表(自己想的时候一开始逻辑都是错的)

public static DoubleNode reverseList(DoubleNode head) {
		DoubleNode pre=null;
		DoubleNode next=null;
		while(head!=null){
			next=head.next;
			head.next=pre;
			head.last=next;
			pre=head;
			head=next;
		}
		return pre;
	}

3.两个链表公共部分

	public static void printCommonPart(Node head1, Node head2) {
		System.out.print("Common Part: ");
		while(head1!=null&&head2!=null){
			if(head1.value==head2.value){
				System.out.print(head1.value+" ");
				head1=head1.next;
				head2=head2.next;
			}else if(head1.value>head2.value){
				head2=head2.next;
			}else{
				head1=head1.next;
			}
		}
	}

4.判断是否是回文链表

	//最简单的方式,使用栈存储
	public static boolean isPalindrome1(Node head) {
		Stack<Integer> stack=new Stack();
		Node p=head;
		while(p!=null){
			stack.push(p.value);
			p=p.next;
		}
		p=head;
		while(!stack.isEmpty()){
			int pop=stack.pop();
			if(p.value!=pop){
				return false;
			}
			p=p.next;
		}
		return true;
	}
	//升级版1:使用栈存一半的数组
	public static boolean isPalindrome2(Node head) {
		if(head==null||head.next==null){
			return true;
		}
		Node h=head;
		Node slow=h;
		Node fast=h;
		Stack<Integer> stack = new Stack<>();
		int num=0;
		while(h!=null){
			num++;
			h=h.next;
		}
		if(num%2==0){
			while(fast!=null){
				slow=slow.next;
				fast=fast.next.next;
			}
		}
		if(num%2==1){
			while(fast.next!=null) {
				slow = slow.next;
				fast = fast.next.next;
			}
		}
		Node slow1=slow;
		while(slow1!=null){
			stack.push(slow1.value);
			slow1=slow1.next;
		}
		while(!stack.isEmpty()){
			if(head.value!=stack.pop()){
				return false;
			}
			head=head.next;
		}
		return true;
	}
//升级版2:使用O(1)的复杂度
public static boolean isPalindrome3(Node head) {
		if(head==null||head.next==null){
			return true;
		}
		//找到中点
		Node h=head;
		Node slow=h;
		Node fast=h;
		while(fast.next!=null&&fast.next.next!=null){
			slow=slow.next;
			fast=fast.next.next;
		}
		//反转右半部分链表
		Node next=null;
		Node pre=null;
		while(slow!=null){
			next=slow.next;
			slow.next=pre;
			pre=slow;
			slow=next;
		}
		Node h2=pre;
		//判断是否是回文
		while(h!=null&&pre!=null){
			if(h.value!=pre.value){
				return false;
			}
			h=h.next;
			pre=pre.next;
		}
		//在反转回原来的
		h=head;
		while(h.next!=null){
			h=h.next;
		}
		Node per2=null;
		Node next2=null;
		while(pre!=null){
			next2=pre.next;
			pre.next=per2;
			per2=pre;
			pre=next2;
		}
		return true;
	}

5.将单向列表分为左边小,中间相等,右边大的形式

//法一:放进node数组中,然后partition
public static Node listPartition1(Node head, int pivot) {
		if(head==null||head.next==null){
			return head;
		}
		//将节点全部放入node数组中
		List<Node> nodeList=new ArrayList<>();
		Node h=head;
		while(h!=null){
			nodeList.add(h);
			h=h.next;
		}
		//partition划分
        arrPartition(nodeList, pivot);
		//链表的重连
		head=h=nodeList.get(0);
        for (int i=1;i<nodeList.size();i++){
            h.next=nodeList.get(i);
            h=h.next;
        }
        h.next=null;
        return head;
    }
	public static void arrPartition(List<Node> nodeArr, int pivot) {
		int left=-1;
		int right=nodeArr.size();
		for(int i=0;i<right;i++){
		    if(nodeArr.get(i).value< pivot){
		        swap(nodeArr,++left,i);;
            }else if(nodeArr.get(i).value> pivot){
		        swap(nodeArr,--right,i);
            }
        }
	}
	public static void swap(List<Node> nodeArr, int a, int b) {
        Node temp = nodeArr.get(a);
        nodeArr.set(a,nodeArr.get(b));
        nodeArr.set(b,temp);
	}
	//法二:分成三个链表,然后重组
	public static Node listPartition2(Node head, int pivot) {
        Node sH=null;
        Node sT=null;
        Node mH=null;
        Node mT=null;
        Node lH=null;
        Node lT=null;
        Node h=head;
        while(h!=null){
            if(h.value<pivot){
                if(sH==null){
                    sH=h;
                    sT=h;
                }else{
                    sT.next=h;
                    sT=sT.next;
                }
            }
            if(h.value==pivot){
                if(mH==null){
                    mH=h;
                    mT=h;
                }else{
                    mT.next=h;
                    mT=mT.next;
                }
            }
            if(h.value>pivot){
                if(lH==null){
                    lH=h;
                    lT=h;
                }else{
                    lT.next=h;
                    lT=lT.next;
                }
            }
            h=h.next;
        }
        if(sH!=null&&mH!=null&&lH!=null){
            sT.next=mH;
            mT.next=lH;
            lT.next=null;
            return sH;
        }
        if(sH==null&&mH!=null&&lH!=null){
            mT.next=lH;
            lT.next=null;
            return mH;
        }
        if(sH!=null&&mH==null&&lH!=null){
            sT.next=lH;
            lT.next=null;
            return sH;
        }
        if(sH!=null&&mH!=null&&lH==null){
            sT.next=mH;
            mT.next=null;
            return sH;
        }
        if(sH==null&&mH==null&&lH!=null){
            lT.next=null;
            return lH;
        }
        if(sH!=null&&mH==null&&lH==null){
            sT.next=null;
            return sH;
        }
        return null;
	}

6.复制含有随机指针节点的链表

//法一:利用hashmap存储节点
public static class Node {
		public int value;
		public Node next;
		public Node rand;

		public Node(int data) {
			this.value = data;
		}
	}

	public static Node copyListWithRand1(Node head) {
		HashMap<Node,Node> hashMap=new HashMap<>();
		Node h=head;
		while(h!=null){
			hashMap.put(h,new Node(h.value));
			h=h.next;
		}
		h=head;
		while (h!=null){
			Node now=hashMap.get(h);
			Node next=hashMap.get(h.next);
			now.next=next;
			Node rand=hashMap.get(h.rand);
			now.rand=rand;
			h=h.next;
		}
		return hashMap.get(head);
	}
//法二:复制节点连接成新链表,再拆开(不能同时连接next和rand,也就是不能把第一步和第二步和起来)
public static Node copyListWithRand2(Node head) {
		if(head==null){
			return null;
		}
		Node h=head;
		//连接成了新链表
		while(h!=null){
			Node next=h.next;
			Node newNode=new Node(h.value);
			newNode.next=next;
			h.next=newNode;
			h=next;
		}
		//复制rand节点
		h=head;
		while(h!=null){
			if(h.rand!=null){
				h.next.rand=h.rand.next;
			}else {
				h.rand=null;
			}
			h=h.next.next;
		}
		//将两个链表分开
		Node h1=head;
		Node head2=head.next;
		Node h2=head2;
		while(h1.next.next!=null&&h2.next!=null){
			h1.next=h1.next.next;
			h1=h1.next;
			h2.next=h2.next.next;
			h2=h2.next;
		}
		h1.next=null;
		h2.next=null;
		return head2;
	}

7.两个可能有环也可能无环的节点,若两个链表相交,则返回相交的第一个节点

public class Code07_FindFirstIntersectNode {

    public static class Node {
        public int value;
        public Node next;

        public Node(int data) {
            this.value = data;
        }
    }
    //主要函数
    public static Node getIntersectNode(Node head1, Node head2) {
        if (head1 == null || head2 == null) {
            return null;
        }
        //获取两个链表的入环节点
        Node loop1 = getLoopNode(head1);
        Node loop2 = getLoopNode(head2);
        if (loop1 == null && loop2 == null) {
            return noLoop(head1, head2);
        }
        if (loop1 != null && loop2 != null) {
            return bothLoop(head1, loop1, head2, loop2);
        }
        return null;
    }
    //一个链表,判断是否有环,有:返回节点,无:null
    public static Node getLoopNode(Node head) {
        if (head == null || head.next == null || head.next.next == null) {
            return null;
        }
        Node slow = head.next;
        Node fast = head.next.next;
        while (slow != fast) {
            slow = slow.next;
            fast = fast.next.next;
            //若走到头了,说明无环
            if (slow.next == null || fast.next == null || fast.next.next == null) {
                return null;
            }
        }
        fast = head;
        //求入环节点
        while (slow != fast) {
            slow = slow.next;
            fast = fast.next;
        }
        return slow;
    }
    //如果两个链表都无环
    public static Node noLoop(Node head1, Node head2) {
        if (head1 == null || head2 == null) {
            return null;
        }
        Node cur1 = head1;
        Node cur2 = head2;
        int length1 = 0;
        int length2 = 0;
        //分别求出两个节点的长度
        while (cur1.next != null) {
            length1++;
            cur1 = cur1.next;
        }
        while (cur2.next != null) {
            length2++;
            cur2 = cur2.next;
        }
        if (cur1 != cur2) {
            return null;
        } else {
            int go = Math.abs(length2 - length1);
            cur1 = head1;
            cur2 = head2;
            //让长的链表先走
            if (length1 >= length2) {
                for (int i = 0; i < go; i++) {
                    cur1 = cur1.next;
                }
            } else {
                for (int i = 0; i < go; i++) {
                    cur2 = cur2.next;
                }
            }
            //走到第一个相加的节点
            while (cur1 != cur2) {
                cur1 = cur1.next;
                cur2 = cur2.next;
            }
            return cur1;
        }
    }
    //如果两个链表都有环
    public static Node bothLoop(Node head1, Node loop1, Node head2, Node loop2) {
        Node cur1 = null;
        Node cur2 = null;
        if (loop1 == loop2) {
            //若入环节点是同一个(和上面两个无环的情况类似)
            cur1 = head1;
            cur2 = head2;
            int length1 = 0;
            int length2 = 0;
            while (cur1 != loop1) {
                length1++;
                cur1 = cur1.next;
            }
            while (cur2 != loop1) {
                length2++;
                cur2 = cur2.next;
            }
            int go = Math.abs(length2 - length1);
            cur1 = head1;
            cur2 = head2;
            if (length1 >= length2) {
                for (int i = 0; i < go; i++) {
                    cur1 = cur1.next;
                }
            } else {
                for (int i = 0; i < go; i++) {
                    cur2 = cur2.next;
                }
            }
            while (cur1 != cur2) {
                cur1 = cur1.next;
                cur2 = cur2.next;
            }
            return cur1;
        } else {
            //若入环节点不是同一个,让loop1节点转一圈,若能遇到loop2,说明有相交
            cur1 = loop1.next;
            while (cur1 != loop1) {//让cur1停的条件是转了一圈
                if (cur1 == loop2) {
                    return cur1;
                }
                cur1 = cur1.next;
            }
        }
        return null;
    }
    public static void main(String[] args) {
        // 1->2->3->4->5->6->7->null
        Node head1 = new Node(1);
        head1.next = new Node(2);
        head1.next.next = new Node(3);
        head1.next.next.next = new Node(4);
        head1.next.next.next.next = new Node(5);
        head1.next.next.next.next.next = new Node(6);
        head1.next.next.next.next.next.next = new Node(7);

        // 0->9->8->6->7->null
        Node head2 = new Node(0);
        head2.next = new Node(9);
        head2.next.next = new Node(8);
        head2.next.next.next = head1.next.next.next.next.next; // 8->6
        System.out.println(getIntersectNode(head1, head2).value);

        // 1->2->3->4->5->6->7->4...
        head1 = new Node(1);
        head1.next = new Node(2);
        head1.next.next = new Node(3);
        head1.next.next.next = new Node(4);
        head1.next.next.next.next = new Node(5);
        head1.next.next.next.next.next = new Node(6);
        head1.next.next.next.next.next.next = new Node(7);
        head1.next.next.next.next.next.next = head1.next.next.next; // 7->4


        // 0->9->8->2...
        head2 = new Node(0);
        head2.next = new Node(9);
        head2.next.next = new Node(8);
        head2.next.next.next = head1.next; // 8->2

        System.out.println(getIntersectNode(head1, head2).value);

        // 0->9->8->6->4->5->6..
        head2 = new Node(0);
        head2.next = new Node(9);
        head2.next.next = new Node(8);
        head2.next.next.next = head1.next.next.next.next.next; // 8->6
        System.out.println(getIntersectNode(head1, head2).value);

    }
}
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值