大数据产业分类
产业分类目前对于大数据产业的分类并没有统一规定,依据不同角度可以总结为以下几种:
(1)二分法。主要依据占有大数据的情况,分为大数据产业和大数据衍生产业。大数据产业主要指自身生产数据或者获取数据的存储、分析、应用类产业。大数据衍生产业主要指从事大数据产业所需要的基础设施和技术支持类产业。
(2)三分法。主要依据数据的营销模式将大数据产业分为3类:①应用大数据进行用户信息行为分析,实现企业自身产品和广告推介的产业;②通过对大数据进行整合,为用户提供从硬件、软件到数据整体解决方案的企业;③出售数据产品和为用户提供具有针对性解决方案的服务产业。
(3)五分法。按照产业的价值模式分为大数据内生型价值模式、外生型价值模式、寄生型价值模式、产品型价值模式和云计算服务型价值模式(见表)。
大数据产业特点
(1)产业数据资产化。在大数据时代,数据渗透到每个行业,逐渐成为企业资产,也成为大数据产业创新的核心驱动力。自身生产数据的互联网企业具有得天独厚的优势,其可以利用其丰厚的数据资产,挖掘数据的潜在价值,洞察用户的信息行为,推动产业利用数据实现精准和个性化的生产、营销和获利模式。
(2)产业技术的高创新性。创新是大数据产业发展的基石。世界上每天都在生成海量数据,如何有效地获取数据、存储数据、整合数据和服务用户,需要大数据产业技术不断革新。具体来讲,包括对大数据的去冗降噪技术、高效率低成本的大数据存储与有效融合技术、非结构化和半结构化数据的高效处理、适合不同行业的大数据挖掘分析工具和开发环境、大幅度降低数据处理、存储和通信能耗等技术的不断优化和创新