工业大数据的定义与边界
工业大数据的定义
《工业大数据白皮书2019版》指出工业大数据是指在工业领域中,围绕典型智能制造模式,从客户需求到销售、订单、计划、研发、设计、工艺、制造、采购、供应、库存、发货和交付、售后服务、运维、报废或回收再制造等整个产品全生命周期各个环节所产生的各类数据及相关技术和应用的总称。工业大数据以产品数据为核心,极大延展了传统工业数据范围,同时还包括工业大数据相关技术和应用。
工业大数据具备双重属性:价值属性和产权属性。一方面,通过工业大数据分析等关键技术能够实现设计、工艺、生产、管理、服务等各个环节智能化水平的提升,满足用户定制化需求,提高生产效率并降低生产成本,为企业创造可量化的价值;另一方面,这些数据具有明确的权属关系和资产价值,企业能够决定数据的具体使用方式和边界,数据产权属性明显。工业大数据的价值属性实质上是基于工业大数据采集、存储、分析等关键技术,对工业生产、运维、服务过程中数据实现价值的提升或变现;工业大数据的产权属性则偏重于通过管理机制和管理方法帮助工业企业明晰数据资产目录与数据资源分布,确定所有权边界,为其价值的深入挖掘提供支撑。
工业大数据的边界
工业大数据的边界可以从数据来源、工业大数据的应用场景两大维度进行明确。从数据的来源看,工业大数据主要包括三类:
第一类是企业运营管理相关的业务数据。这类数据来自企业信息化范畴,包括企业资源计划(ERP)、产品生命周期管理(PLM)、供应链管理(SCM)、客户关系管理(CRM)和能耗管理系统(EMS)等,此类数据是工业企业传统意义上的数据资产。
第二类是制造过程数据。主要是指工业生产过程中,装备、物料及产品加工过程的工况状态参数、环境参数等生产情况数据,通过 MES 系统实时传递,目前在智能装备大量应用的情况下,此类数据量增长最快。
工业大数据
最新推荐文章于 2024-05-11 20:35:24 发布