题目:
Given an integer array nums
, find the contiguous subarray within an array (containing at least one number) which has the largest product.
Example 1:
Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
题目分析:求一个数组,连续子数组的最大乘积。
解题思路:
其实子数组乘积最大值的可能性为:累乘的最大值碰到了一个正数;或者,累乘的最小值(负数),碰到了一个负数。所以每次要保存累乘的最大(正数)和最小值(负数)。同时还有一个选择起点的逻辑,如果之前的最大和最小值同当前元素相乘之后,没有当前元素大(或小)那么当前元素就可作为新的起点。例如,前一个元素为0的情况,{1,0,9,2},到9的时候9应该作为一个最大值,也就是新的起点,{1,0,-9,-2}也是同样道理,-9比当前最小值还小,所以更新为当前最小值。
这种方法只需要遍历一次数组即可,算法时间复杂度为O(n)。
代码:
public class MaximumProductSubarray
{
public static void main(String[] args)
{
/**
* Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the
* largest product.
*/
/**
* Example 1:
* Input: [2,3,-2,4]
* Output: 6
* Explanation: [2,3] has the largest product 6.
*/
int[] nums1 = { 2, 3, -2, 4 };
System.out.println(maxProduct(nums1));
/**
* Example 2:
* Input: [-2,0,-1]
* Output: 0
* Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
*/
int[] nums2 = { -2, 0, -1 };
System.out.println(maxProduct(nums2));
}
public static int maxProduct(int[] nums)
{
if (nums.length == 1)
{
return nums[0];
}
int max = nums[0], tmpMax = nums[0], tmpMin = nums[0];
for (int i = 1; i < nums.length; i++)
{
int a = tmpMax * nums[i];
int b = tmpMin * nums[i];
tmpMax = Math.max(Math.max(a, b), nums[i]);
tmpMin = Math.min(Math.min(a, b), nums[i]);
max = Math.max(max, tmpMax);
}
return max;
}
}