JVM垃圾回收

本文深入探讨JVM如何识别垃圾对象,详细讲解标记-清除、复制、标记-整理及分代收集等垃圾回收算法。同时,介绍了Serial、ParNew、Parallel Scavenge、Parallel Old、CMS和G1等多种垃圾回收器的工作原理和特性。

**

一、什么是垃圾?

**

对于JVM来说,什么样的对象是垃圾对象,是可以回收的呢?一般通过以下两种方式确认某对象是否是垃圾对象

1.1 引用计数法

引用计数器算法是给每个对象设置一个计数器,当有地方引用这个对象的时候,计数器+1,当引用失效的时候,计数器-1,当计数器为0的时候,JVM就认为对象不再被使用,是“垃圾”了。

引用计数器实现简单,效率高;但是不能解决循环引用问问题(A对象引用B对象,B对象又引用A对象,但是A,B对象已不被任何其他对象引用),同时每次计数器的增加和减少都带来了很多额外的开销,所以在JDK1.1之后,这个算法已经不再使用了。

1.2 根搜索法

根搜索方法是通过一些“GC Roots”对象作为起点,从这些节点开始往下搜索,搜索通过的路径成为引用链(Reference Chain),当一个对象没有被GC Roots的引用链连接的时候,说明这个对象是不可用的。

GC Roots对象包括:

a) 虚拟机栈(栈帧中的本地变量表)中的引用的对象。

b) 方法区域中的类静态属性引用的对象。

c) 方法区域中常量引用的对象。

d) 本地方法栈中JNI(Native方法)的引用的对象。

了解了JVM是怎么确定对象是“垃圾”之后,让我们来看看垃圾回收的算法。

**

二、垃圾回收算法

**

2.1 标记—清除算法(Mark-Sweep)

标记—清除算法包括两个阶段:“标记”和“清除”。在标记阶段,确定所有要回收的对象,并做标记。清除阶段紧随标记阶段,将标记阶段确定不可用的对象清除。

标记—清除算法是基础的收集算法,标记和清除阶段的效率不高,而且清除后回产生大量的不连续空间,这样当程序需要分配大内存对象时,可能无法找到足够的连续空间。

垃圾回收前:

在这里插入图片描述

垃圾回收后:

在这里插入图片描述

注(以下均按照这种方式来描述):
绿色:存活对象 红色:可回收对象 白色:未使用空间

2.2 复制算法

复制算法是把内存分成大小相等的两块,每次使用其中一块,当垃圾回收的时候,把存活的对象复制到另一块上,然后把这块内存整个清理掉。

复制算法实现简单,运行效率高,但是由于每次只能使用其中的一半,造成内存的利用率不高。现在的JVM用复制方法收集新生代,由于新生代中大部分对象(98%)都是朝生夕死的,所以两块内存的比例不是1:1(大概是8:1)。

垃圾回收前:
在这里插入图片描述

垃圾回收后:

在这里插入图片描述

2.3 标记—整理算法(Mark-Compact)

标记—整理算法整合了标记-清除算法和复制算法的优点,将存活对象向内存的一端移动,,然后直接回收边界以外的内存。

标记—整理算法提高了内存的利用率,并且它适合在收集对象存活时间较长的老年代。

垃圾回收前:

在这里插入图片描述

垃圾回收后:

在这里插入图片描述

2.4 分代收集(Generational Collection)

分代收集是根据对象的存活时间把内存分为新生代和老年代,根据个代对象的存活特点,每个代采用不同的垃圾回收算法。新生代采用标记—复制算法,老年代采用标记—整理算法。

**

三、JVM垃圾回收器

**

在这里插入图片描述

3.1 Serial收集器(Serial/Serial Old)

Serial是一个单线程的收集器,但它的“单线程”意义并不仅仅说明它只会使用一个CPU或一条线程去完成垃圾和收集工作,更重要的是它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。

在这里插入图片描述

3.2 ParNew收集器

ParNew收集器其实就是Serial收集器的多线程版本。

它是运行在Server模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关但很重要的原因是:除了Serial收集器外,目前只有它能与CMS收集器配合工作。

在这里插入图片描述
3.3 Parallel Scavenge收集器

该收集器也是一个新生代的垃圾收集器,他也是使用复制算法的收集器,又是一个并行的垃圾收集器。该收集器的特点是他的关注点与其他的收集器不同,CMS等收集器的关注点是尽可能缩短垃圾回收时用户线程的停顿时间,而parallel Scavenge收集器的目标是达到一个可控制的吞吐量。所谓吞吐量就是CPU用于运行代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾回收时间),比如虚拟机总共运行100分钟,垃圾回收占用了1分钟,那么吞吐量就是99%。

3.4 Parallel Old收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。

在这里插入图片描述

3.5 CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。CMS是基于“标记-清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤,包括:

  1. 初始标记(CMS initial mark)
  2. 并发标记(CMS concurrent mark)
  3. 重新标记(CMS remark)
  4. 并发清除(CMS concurrent sweep)

其中,初始标记、重新标记这两个步骤仍然需要”Stop The world”。初始标记仅仅只是标记一下GC Roots Tracing的过程,而重新标记阶段则是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。
由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

在这里插入图片描述

CMS的优势: 并发收集、低停顿。
CMS的缺点:

  • 对CPU资源非常敏感。CMS默认启动的回收线程数是(CPU数量 + 3)/4,并发回收时垃圾收集线程所占CPU资源随着CPU数量的增加而下降,而且在CPU不足4个时,CMS对用户程序的影响就可能变得很大,导致执行速度降低
  • CMS收集器无法处理浮动垃圾,可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生
  • CMS是一款基于“标记-清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片太多的时候,将会给大对象分配带来很大麻烦

3.6 G1收集器

G1是一款面向服务端应用的垃圾收集器。HOtSpot开发团队赋予它的使命是未来可以替换掉CMS收集器。

G1具备如下特点:

  • 并行与并发: G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行
  • 分代收集: 虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的就对象以获取更好的收集效果
  • 空间整合 :G1从整体上来看是基于“标记-整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的,这意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存
  • 可预测的停顿 :这是G1相对于CMS的另一大优势

G1垃圾收集器和CMS垃圾收集器有几点不同。首先,最大的不同是内存的组织方式变了。Eden,Survivor和Tenured等内存区域不再是连续的了,而是变成了一个个大小一样的region - 每个region从1M到32M不等。

在这里插入图片描述

一个region有可能属于Eden,Survivor或者Tenured内存区域。图中的E表示该region属于Eden内存区域,S表示属于Survivor内存区域,T表示属于Tenured内存区域。图中空白的表示未使用的内存空间。G1垃圾收集器还增加了一种新的内存区域,叫做Humongous内存区域,如图中的H块。这种内存区域主要用于存储大对象-即大小超过一个region大小的50%的对象。

在G1垃圾收集器中,年轻代的垃圾回收过程跟PS(Parallel Scavenge)垃圾收集器和CMS垃圾收集器差不多。

在这里插入图片描述
对于年老代上的垃圾收集,G1垃圾收集器也分为4个阶段,基本跟CMS垃圾收集器一样,但略有不同:

  1. Initial Mark阶段 - 同CMS垃圾收集器的Initial Mark阶段一样,G1也需要暂停应用程序的执行,它会标记从根对象出发,在根对象的第一层孩子节点中标记所有可达的对象。但是G1的垃圾收集器的Initial Mark阶段是跟minor gc一同发生的。也就是说,在G1中,你不用像在CMS那样,单独暂停应用程序的执行来运行Initial Mark阶段,而是在G1触发minor gc的时候一并将年老代上的Initial Mark给做了
  2. Concurrent Mark阶段 - 在这个阶段G1做的事情跟CMS一样。但G1同时还多做了一件事情,那就是,如果在Concurrent Mark阶段中,发现哪些Tenured region中对象的存活率很小或者基本没有对象存活,那么G1就会在这个阶段将其回收掉,而不用等到后面的clean up阶段。这也是Garbage First名字的由来。同时,在该阶段,G1会计算每个 region的对象存活率,方便后面的clean up阶段使用
  3. Remark阶段 - 在这个阶段G1做的事情跟CMS一样, 但是采用的算法不同,能够在Remark阶段更快的标记可达对象
  4. Clean up/Copy阶段 - 在G1中,没有CMS中对应的Sweep阶段。相反 它有一个Clean up/Copy阶段,在这个阶段中,G1会挑选出那些对象存活率低的region进行回收,这个阶段也是和minor gc一同发生的,如下图所示

在这里插入图片描述
从上可以看到,由于Initial Mark阶段和Clean up/Copy阶段都是跟minor gc同时发生的,相比于CMS,G1暂停应用程序的时间更少,从而提高了垃圾回收的效率。

拓展:

https://www.ibm.com/developerworks/cn/java/j-lo-JVMGarbageCollection/index.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值