题目链接:2104 — K-th Number
Description
You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment.
That is, given an array a[1…n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: “What would be the k-th number in a[i…j] segment, if this segment was sorted?”
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2…5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.
Input
The first line of the input file contains n — the size of the array, and m — the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000).
The second line contains n different integer numbers not exceeding 109by their absolute values — the array for which the answers should be given.
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).
Output
For each question output the answer to it — the k-th number in sorted a[i…j] segment.
Sample Input
7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3
Sample Output
5
6
3
Hint
This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.
离散化操作:
- 原数组排序
- unique去重
- getid函数 通过lower_bound得到离散化后的数
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
int getid(int x) {return lower_bound(v.begin(), v.end(), x) - v.begin() + 1;}
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
const int maxn = 1e5 + 6;
int n, m, cnt, root[maxn], a[maxn], x, y, k;
struct node { int l, r, sum; } T[maxn*40];
vector<int> v;
int getid(int x) {return lower_bound(v.begin(), v.end(), x) - v.begin() + 1;}
void update(int l, int r, int &x, int y, int pos)
{
T[++cnt] = T[y], T[cnt].sum++, x = cnt;
if (l == r)
return;
int mid = l + r >> 1;
if (mid >= pos)
update(l, mid, T[x].l, T[y].l, pos);
else
update(mid + 1, r, T[x].r, T[y].r, pos);
}
int query(int l, int r, int x, int y, int k)
{
if (l == r)
return l;
int mid = l + r >> 1;
int sum = T[T[y].l].sum - T[T[x].l].sum;
if (sum >= k)
return query(l, mid, T[x].l, T[y].l, k);
else
return query(mid + 1, r, T[x].r, T[y].r, k - sum);
}
int main()
{
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
v.push_back(a[i]);
}
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
for (int i = 1; i <= n; i++)
update(1, n, root[i], root[i - 1], getid(a[i]));
for (int i = 1; i <= m; i++)
{
scanf("%d%d%d", &x, &y, &k);
printf("%d\n", v[query(1, n, root[x - 1], root[y], k) - 1]);
}
return 0;
}