矩阵快速幂模板

今天学习了一下小红书上的矩阵快速幂 

以为他写的那么短会写的多么高大上

原来只是把运算符重载了一下

 先定义矩阵数据结构:  

struct Mat {
double mat[N][N];
};

  O(N^3)实现一次矩阵乘法

复制代码
Mat operator * (Mat a, Mat b) {
Mat c;
memset(c.mat, 0, sizeof(c.mat));
int i, j, k;
for(k = 0; k < n; ++k) {
for(i = 0; i < n; ++i) {
if(a.mat[i][k] <= 0) continue; //不要小看这里的剪枝,cpu运算乘法的效率并不是想像的那么理想(加法的运算效率高于乘法,比如Strassen矩阵乘法)
for(j = 0; j < n; ++j) {
if(b.mat[k][j] <= 0) continue; //剪枝
c.mat[i][j] += a.mat[i][k] * b.mat[k][j];
}
}
}
return c;
}
复制代码

 

有了前边的介绍,就可以实现矩阵的快速连乘了。

复制代码
Mat operator ^ (Mat a, int k) {
Mat c;
int i, j;
for(i = 0; i < n; ++i)
for(j = 0; j < n; ++j)
c.mat[i][j] = (i == j); //初始化为单位矩阵

for(; k; k >>= 1) {
if(k&1) c = c*a;

a = a*a;
}
return c;
}
复制代码

 

【SCI级别】多策略改进鲸鱼优化算法(HHWOA)和鲸鱼优化算法(WOA)在CEC2017测试集函数F1-F30寻优对比内容概要:本文档主要介绍了一项关于多策略改进鲸鱼优化算法(HHWOA)与标准鲸鱼优化算法(WOA)在CEC2017测试集函数F1-F30上进行寻优性能对比的研究,属于智能优化算法领域的高水平科研工作。文中通过Matlab代码实现算法仿真,重点展示了HHWOA在收敛速度、寻优精度和稳定性方面的优势,体现了多策略改进的有效性。该研究适用于复杂优化问题求解,尤其在工程优化、参数辨识、机器学习超参数调优等领域具有应用潜力。; 适合人群:具备一定算法基础和Matlab编程能力的研究生、科研人员及从事智能优化算法开发与应用的工程技术人员,尤其适合致力于SCI论文写作与算法创新的研究者。; 使用场景及目标:①用于理解鲸鱼优化算法的基本原理及多策略改进思路(如种群初始化、非线性收敛因子、精英反向学习等);②为智能优化算法的性能测试与对比实验提供CEC2017标准测试平台的实现参考;③支撑学术研究中的算法创新与论文复现工作。; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注HHWOA的改进策略模块与WOA的差异,通过重复实验验证算法性能,并可将其思想迁移至其他优化算法的改进中,提升科研创新能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值