一、描述
本文使用 Keras 实现了 SegNet 网络的整体架构
论文地址:SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
代码地址:GitHub
二、keras 实现 SegNet
首先导入所需的函数包
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 19 16:33:17 2019
@author: zhangyonghui
"""
from keras.models import Model
from keras.layers import Conv2D
from keras.layers import BatchNormalization, Activation, Input
from keras.optimizers import Adam
from keras import backend as K
from keras.layers.core import Layer
from keras.layers.convolutional import Convolution2D
1、定义 MaxPoolingWithArgmax:
通过此类记住最大池化时每个窗口的最大值的位置
class MaxPoolingWithArgmax2D(Layer):
def __init__(self, pool_size=(2, 2), strides=(2, 2), padding='same', **kwargs):
super(MaxPoolingWithArgmax2D, self).__init__(**kwargs)
self.padding = padding
self.pool_size = pool_size
self.strides = strides
def call(self, inputs, **kwargs):
padding = self.padding
pool_size = self.pool_size
strides = self.strides
if K.backend() == 'tensorflow':
ksize = [1, pool_size[0], pool_size[1], 1]
padding = padding.upper()
strides = [1, strides[0], strides[1], 1]
output, argmax = K.tf.nn.max_pool_with_argmax(inputs, ksize=ksize, strides=strides, padding=padding)
else:
errmsg = '{} backend is not supported for layer {}'.format(K.backend(), type(self).__name__)
raise NotImplementedError(errmsg)
argmax = K.cast(argmax, K.floatx())
return [output, argmax]
def compute_output_shape(self, input_shape):
ratio = (1, 2, 2, 1)
output_shape = [dim // ratio[idx] if dim is not None else None for idx, dim in enumerate(input_shape)]
output_shape = tuple(output_shape)
return [output_shape, output_shape]
def compute_mask(self, inputs, mask=None):
return 2 * [None]
2、定义 MaxUnpooling:
在还原特征大小时,在记忆的最大值的位置上还原该值,窗口其余的视野内均为0
class MaxUnpooling2D(Layer):
def __init__(self, size=(2, 2), **kwargs):
super(MaxUnpooling2D, self).__init__(**kwargs)
self.size = size
def call(self, inputs, output_shape=None):
updates, mask = inputs[0], inputs[1]
with K.tf.variable_scope(self.name):
mask = K.cast(mask, 'int32')
input_shape = K.tf.shape(updates, out_type='int32')
# calculation new shape
if output_shape is None:
output_shape = (input_shape[0], input_shape[1] * self.size[0], input_shape[2] * self.size[1], input_shape[3])
self.output_shape1 = output_shape
# calculation indices for batch, height, width and feature maps
one_like_mask = K.ones_like(mask, dtype='int32')
batch_shape = K.concatenate([[input_shape[0]], [1], [1], [1]], axis=0)
batch_range = K.reshape(K.tf.range(output_shape[0], dtype='int32'), shape=batch_shape)
b = one_like_mask * batch_range
y = mask // (output_shape[2] * output_shape[3])
x = (mask // output_shape[3]) % output_shape[2]
feature_range = K.tf.range(output_shape[3], dtype='int32')
f = one_like_mask * feature_range
# transpose indices & reshape update values to one dimension
updates_size = K.tf.size(updates)
indices = K.transpose(K.reshape(K.stack([b, y, x, f]), [4, updates_size]))
values = K.reshape(updates, [updates_size])
ret = K.tf.scatter_nd(indices, values, output_shape)
return ret
def compute_output_shape(self, input_shape):
mask_shape = input_shape[1]
return mask_shape[0], mask_shape[1] * self.size[0], mask_shape[2] * self.size[1], mask_shape[3]
3、构建模型
def SegNet(input_shape, n_labels=2, kernel=3, pool_size=(2, 2), output_mode="softmax", model_summary=None):
# encoder
inputs = Input(shape=input_shape)
conv_1 = Convolution2D(540, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(inputs)
conv_1 = BatchNormalization()(conv_1)
conv_1 = Activation("relu")(conv_1)
conv_2 = Convolution2D(540, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_1)
conv_2 = BatchNormalization()(conv_2)
conv_2 = Activation("relu")(conv_2)
pool_1, mask_1 = MaxPoolingWithArgmax2D(pool_size)(conv_2)
conv_3 = Convolution2D(540, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(pool_1)
conv_3 = BatchNormalization()(conv_3)
conv_3 = Activation("relu")(conv_3)
conv_4 = Convolution2D(540, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_3)
conv_4 = BatchNormalization()(conv_4)
conv_4 = Activation("relu")(conv_4)
pool_2, mask_2 = MaxPoolingWithArgmax2D(pool_size)(conv_4)
conv_5 = Convolution2D(1080, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(pool_2)
conv_5 = BatchNormalization()(conv_5)
conv_5 = Activation("relu")(conv_5)
conv_6 = Convolution2D(1080, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_5)
conv_6 = BatchNormalization()(conv_6)
conv_6 = Activation("relu")(conv_6)
conv_7 = Convolution2D(1080, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_6)
conv_7 = BatchNormalization()(conv_7)
conv_7 = Activation("relu")(conv_7)
pool_3, mask_3 = MaxPoolingWithArgmax2D(pool_size)(conv_7)
conv_8 = Convolution2D(1080, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(pool_3)
conv_8 = BatchNormalization()(conv_8)
conv_8 = Activation("relu")(conv_8)
conv_9 = Convolution2D(1080, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_8)
conv_9 = BatchNormalization()(conv_9)
conv_9 = Activation("relu")(conv_9)
conv_10 = Convolution2D(1080, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_9)
conv_10 = BatchNormalization()(conv_10)
conv_10 = Activation("relu")(conv_10)
pool_4, mask_4 = MaxPoolingWithArgmax2D(pool_size)(conv_10)
conv_11 = Convolution2D(2160, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(pool_4)
conv_11 = BatchNormalization()(conv_11)
conv_11 = Activation("relu")(conv_11)
conv_12 = Convolution2D(2160, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_11)
conv_12 = BatchNormalization()(conv_12)
conv_12 = Activation("relu")(conv_12)
conv_13 = Convolution2D(2160, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_12)
conv_13 = BatchNormalization()(conv_13)
conv_13 = Activation("relu")(conv_13)
pool_5, mask_5 = MaxPoolingWithArgmax2D(pool_size)(conv_13)
print("Build enceder done..")
# decoder
unpool_1 = MaxUnpooling2D(pool_size)([pool_5, mask_5])
conv_14 = Convolution2D(1080, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(unpool_1)
conv_14 = BatchNormalization()(conv_14)
conv_14 = Activation("relu")(conv_14)
conv_15 = Convolution2D(1080, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_14)
conv_15 = BatchNormalization()(conv_15)
conv_15 = Activation("relu")(conv_15)
conv_16 = Convolution2D(1080, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_15)
conv_16 = BatchNormalization()(conv_16)
conv_16 = Activation("relu")(conv_16)
unpool_2 = MaxUnpooling2D(pool_size)([conv_16, mask_4])
conv_17 = Convolution2D(1080, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(unpool_2)
conv_17 = BatchNormalization()(conv_17)
conv_17 = Activation("relu")(conv_17)
conv_18 = Convolution2D(1080, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_17)
conv_18 = BatchNormalization()(conv_18)
conv_18 = Activation("relu")(conv_18)
conv_19 = Convolution2D(1080, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_18)
conv_19 = BatchNormalization()(conv_19)
conv_19 = Activation("relu")(conv_19)
unpool_3 = MaxUnpooling2D(pool_size)([conv_19, mask_3])
conv_20 = Convolution2D(540, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(unpool_3)
conv_20 = BatchNormalization()(conv_20)
conv_20 = Activation("relu")(conv_20)
conv_21 = Convolution2D(540, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_20)
conv_21 = BatchNormalization()(conv_21)
conv_21 = Activation("relu")(conv_21)
conv_22 = Convolution2D(540, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_21)
conv_22 = BatchNormalization()(conv_22)
conv_22 = Activation("relu")(conv_22)
unpool_4 = MaxUnpooling2D(pool_size)([conv_22, mask_2])
conv_23 = Convolution2D(540, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(unpool_4)
conv_23 = BatchNormalization()(conv_23)
conv_23 = Activation("relu")(conv_23)
conv_24 = Convolution2D(540, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(conv_23)
conv_24 = BatchNormalization()(conv_24)
conv_24 = Activation("relu")(conv_24)
unpool_5 = MaxUnpooling2D(pool_size)([conv_24, mask_1])
conv_25 = Convolution2D(270, (kernel, kernel), padding="same", kernel_initializer = 'he_normal')(unpool_5)
conv_25 = BatchNormalization()(conv_25)
conv_25 = Activation("relu")(conv_25)
out=Conv2D(n_labels,1, activation = output_mode)(conv_25)
print("Build decoder done..")
model = Model(inputs=inputs, outputs=out, name="SegNet")
model.compile(optimizer = Adam(lr = 1e-4), loss = 'categorical_crossentropy', metrics = ['categorical_accuracy'])
if model_summary is True:
model.summary()
return model
4、输出模型的整体结构
if __name__ == '__main__':
SegNet(input_shape=(64, 64, 270), n_labels=4, model_summary=True)
运行结果:
祝您浏览愉快!