pytorch代码笔记2:torch.rand、torch.randn、torch.normal、torch.cat、torch.pow

1、torch.rand(*sizes, out=None) → Tensor

均匀分布。返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数。张量的形状由参数sizes定义。

参数:

  • sizes (int…) - 整数序列,定义了输出张量的形状
  • out (Tensor, optinal) - 结果张量

2、torch.randn(*sizes, out=None) → Tensor

标准正态分布。返回一个张量,包含了从标准正态分布(均值为0,方差为1,即高斯白噪声)中抽取的一组随机数。张量的形状由参数sizes定义。

参数:

  • sizes (int…) - 整数序列,定义了输出张量的形状
  • out (Tensor, optinal) - 结果张量

3、torch.normal(means, std, out=None) →  Tensor

离散正态分布。返回一个张量,包含了从指定均值means和标准差std的离散正态分布中抽取的一组随机数。标准差std是一个张量,包含每个输出元素相关的正态分布标准差。

参数:

  • means (float, optional) - 均值
  • std (Tensor) - 标准差
  • out (Tensor) - 输出张量

 4、torch.cat(seq,dim,out=None)→  Tensor

连接序列。将两个张量(tensor)拼接在一起。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值