巨大的斐波那契数UVA11582
题意:输入两个非负整数a、b和正整数n(0<=a,b<264,1<=n<=1000),你的任务是计算f(ab)除以n的余数,f(0) = 0, f(1) = 1,且对于所有非负整数i,f(i + 2) = f(i + 1) + f(i)。
思路:根据紫树上的说法(p316),由于对n取余,余数最多有n种,所以最多n*n项就会出现重复(我没理解,先当结论记住吧)。设F[i] = f[i]%n,因此,我们只需要计算出F[0]~F[n*n]即可。
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<utility>
#include<set>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#define maxn 1010
#define INF 0x3f3f3f3f
#define LL long long
#define ULL unsigned long long
#define E 1e-8
#define mod 1000000007
#define P pair<int,int>
using namespace std;
vector<int >v[maxn];
int T[maxn];
void init()
{
for(int i=2;i<=1000;++i){
v[i].push_back(0);
v[i].push_back(1);
for(int j=2;;++j){
v[i].push_back((v[i][j-1]%i+v[i][j-2]%i)%i);
if(v[i][j-1]==0 && v[i][j]==1){
T[i] = j-1;
break;
}
}
}
}
ULL Quick_Pow(ULL a,ULL b,int m)
{
ULL ans = 1;
while(b){
if(b&1) ans = (ans%m)*(a%m)%m;
a = (a%m)*(a%m)%m;
b>>=1;
}
return ans;
}
int main()
{
int t,m;
ULL a,b;
scanf("%d",&t);
init();
while(t--){
scanf("%llu%llu%d",&a,&b,&m);
if(a==0||m==1){
printf("0\n");
continue;
}
ULL ans = Quick_Pow(a%T[m],b,T[m]);
printf("%d\n",v[m][ans]);
}
return 0;
}