Coprime Sequence HDU - 6025

本文介绍了一种算法问题,即给定一个整数序列,在移除一个元素后找到该序列中剩余元素的最大公约数的最大值。文章提供了问题的背景、解决思路及AC代码实现。

Coprime Sequence

  HDU - 6025 

Do you know what is called ``Coprime Sequence''? That is a sequence consists of  nn positive integers, and the GCD (Greatest Common Divisor) of them is equal to 1. 
``Coprime Sequence'' is easy to find because of its restriction. But we can try to maximize the GCD of these integers by removing exactly one integer. Now given a sequence, please maximize the GCD of its elements.
InputThe first line of the input contains an integer  T(1T10)T(1≤T≤10), denoting the number of test cases. 
In each test case, there is an integer  n(3n100000)n(3≤n≤100000) in the first line, denoting the number of integers in the sequence. 
Then the following line consists of  nn integers  a1,a2,...,an(1ai109)a1,a2,...,an(1≤ai≤109), denoting the elements in the sequence.OutputFor each test case, print a single line containing a single integer, denoting the maximum GCD.Sample Input
3
3
1 1 1
5
2 2 2 3 2
4
1 2 4 8
Sample Output
1
2
2

题意:已知长度为n的序列,问删除其中一个数后,这个新序列的最大公约数最大能为多少。

思路:对于第i个数,其前面的gcd和其后面的gcd都是固定的,先按顺序分别从前向后再后向前分别记录每个子串的gcd并记录,最后模拟删除第i个数后对其前后求最大公约数,比较出最大的即可。

AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<utility>
#include<set>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#define maxn 100010
#define INF 0x3f3f3f3f
#define LL long long
#define ULL unsigned long long
#define E 1e-8
#define mod 100000000
using namespace std;

int a[maxn],dp1[maxn],dp2[maxn];
int gcd(int x,int y)
{
    if(y==0) return x;
    return gcd(y,x%y);
}
int main()
{
    int t,n;
    scanf("%d",&t);
    while(t--){
        scanf("%d",&n);
        for(int i=1;i<=n;++i){
            scanf("%d",&a[i]);
        }
        dp1[1] = a[1];
        dp2[n] = a[n];
        for(int i=2;i<=n;++i){
            dp1[i] = gcd(dp1[i-1],a[i]);
        }
        for(int i=n-1;i>=1;--i){
            dp2[i] = gcd(dp2[i+1],a[i]);
        }
        int MAX = max(dp2[2],dp1[n-1]); //判断去头或者去尾时最大公倍数
        for(int i=2;i<=n-1;++i){
            MAX = max(MAX,gcd(dp1[i-1],dp2[i+1]));
        }
        cout<<MAX<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值