原题
链接
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, “ACE” is a subsequence of “ABCDE” while “AEC” is not).
Here is an example:
S = “rabbbit”, T = “rabbit”
Return 3.
分析
子序列的个数.母串
S=s0s1s2…si−2si−1…
,子串
T=t0t1t2…ti−2ti−1…
令
dp(i,j)
表示
{s0s1s2…si−2si−1}
和
{t0t1t2…ti−2ti−1}
的状态
可以列出如下动规方程:
代码
对照方程写出代码即可
class Solution {
public:
int numDistinct(string s, string t)
{
int m=s.size();
int n=t.size();
vector< vector<int> > dp(m+1,vector<int>(n+1,0));
for(int i=0;i<=m;++i)
{
dp[i][0]=1;
}
for(int i = 1;i <= m; ++i)
{
for(int j = 1; j <= n; ++j)
{
if(s[i-1]==t[j-1])
{
dp[i][j]=dp[i-1][j-1]+dp[i-1][j];
}
else
{
dp[i][j]=dp[i-1][j];
}
}
}
return dp[m][n];
}
};
本文介绍了一种使用动态规划解决字符串子序列计数问题的方法。通过定义状态dp(i,j)来表示母串前i个字符与子串前j个字符的匹配情况,实现了对任意两个字符串间子序列数量的有效计算。
317

被折叠的 条评论
为什么被折叠?



