yolov8 瑞芯微 RKNN 的 C++部署,部署工程难度小、模型推理速度快

本文介绍了对Yolov8目标检测模型进行部署的优化,通过使用rknn模型和C++代码在RK3588芯片上实现,相较于之前的方法,部署难度降低,模型推理速度加快,尽管后处理时耗略有增加,但整体性能提升明显。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   之前写过两次yolov8目标检测部署,后续继续思考,针对部署还有优化空间,本示例的部署方式优化了部署难度,加快了模型推理速度(略微增加了后处理的时耗)。

特别说明:如有侵权告知删除,谢谢。

【完整代码】代码和模型

1、rknn模型准备

   onnx转rknn模型这一步就不再赘述,请参考上一篇 【yolov8n 瑞芯微RKNN和地平线Horizon芯片仿真测试部署,部署工程难度小、模型推理速度快】 。上一篇提供了完整的模型和代码,如果仅仅是想验证模型,可以直接拿提供的rknn模型进行后续的步骤,本篇也是基于上一篇转好的rknn模型进行的,在rk3588芯片部署测试。

2、C++代码准备

   本篇中的 C++ 代码基于瑞芯微官方提供的 rknpu2_1.3.0 进行的。官方提供的开源示例参考 ,提取码:rknn .

3、C++ 代码

   模型和图片读取部分参考官方提供的示例,详细代码请参本实例对应的github仓库,代码和模型 。本实例提供的完整代码也就只包含两个.c文件,阅读起来没啥难度。

4、编译运行

1)编译

cd examples/rknn_yolov8_demo_dfl_open

bash build-linux_RK3588.sh

2)运行

cd install/rknn_yolov8_demo_Linux

./rknn_yolov8_demo

注意:修改模型、测试图像、保存图像的路径,所在文件为 src 下main.cc文件。

5、板端效果

冒号“:”前的数子是coco的80类对应的类别,后面的浮点数是目标得分。(类别:得分)
(注:图片来源coco128)
在这里插入图片描述

说明:推理测试预处理没有考虑等比率缩放,激活函数 SiLU 用 Relu 进行了替换。由于使用的是coco128的128张图片数据进行训练的,且迭代的次数不多,效果并不是很好,仅供测试流程用。换其他图片测试检测不到属于正常现象,最好选择coco128中的图像进行测试。

6、模型和后处理时耗

  C++完整部署代码和模型示例参考

  把板端C++代码的模型和时耗也给贴出来供大家参考,使用芯片rk3588,模型输入640x640,类别80类。相对之前在rk3588上推理40ms,降到了17ms,后处理稍微有增加。

  上一篇【yolov8 瑞芯微 RKNN 的 C++部署】部署到rknn3588上的C++时耗
在这里插入图片描述
  本篇部署方法时耗
在这里插入图片描述
2024年1月12日:后处理代码有所优化,后处理时耗大幅度降低。(检测类别越多效果越明显,检测1个类别就没有优化效果,代码已同步到对应的代码仓中)
在这里插入图片描述

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值