LeetCode 198. House Robber--动态规划--C++,Java,Python解法

一道关于动态规划的LeetCode题目,要求计算在不触动相邻房子警报的情况下能抢劫的最大金额。提供Python、Java和C++三种解法。

此题链接:House Robber - LeetCode
LeetCode 动态规划(Dynamic programming)系列题目:LeetCode 动态规划(Dynamic programming)系列题目


You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Example 1:

Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
             Total amount you can rob = 1 + 3 = 4.

Example 2:

Input: [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
             Total amount you can rob = 2 + 9 + 1 = 12.

这道题目是标准的动态规划,可以用递归或者迭代。递归做法比较简单,但是很容易太深,迭代做法即可。
Python解法如下:

class Solution:
    def rob(self, nums: List[int]) -> int:
        count=0
        if nums==[]:
            return 0
        l=[0 for i in range(0,len(nums))]
        for i in range(0,len(nums)):
            if i==0:
                l[0]=nums[0]
            elif i==1:
                l[1]=max(l[0],nums[1])
            else:
                l[i]=max(l[i-2]+nums[i],l[i-1])
        return l[-1]

Java解法如下:

class Solution {
  public int rob(int[] num) {
    int prevMax = 0;
    int currMax = 0;
    for (int x : num) {
        int temp = currMax;
        currMax = Math.max(prevMax + x, currMax);
        prevMax = temp;
    }
    return currMax;
}
}

C++解法如下:

class Solution {
public:
    int rob(vector<int>& nums) {
        const int n = nums.size();
        if (n == 0) return 0;
        if (n == 1) return nums[0];
        if (n == 2) return max(nums[0], nums[1]);
        vector<int> f(n, 0);
        f[0] = nums[0];
        f[1] = max(nums[0], nums[1]);
        for (int i = 2; i < n; ++i)
            f[i] = max(f[i-2] + nums[i], f[i-1]);
        return f[n-1];
    }
};
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值