此题链接:House Robber - LeetCode
LeetCode 动态规划(Dynamic programming)系列题目:LeetCode 动态规划(Dynamic programming)系列题目
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
Example 1:
Input: [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
Example 2:
Input: [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob = 2 + 9 + 1 = 12.
这道题目是标准的动态规划,可以用递归或者迭代。递归做法比较简单,但是很容易太深,迭代做法即可。
Python解法如下:
class Solution:
def rob(self, nums: List[int]) -> int:
count=0
if nums==[]:
return 0
l=[0 for i in range(0,len(nums))]
for i in range(0,len(nums)):
if i==0:
l[0]=nums[0]
elif i==1:
l[1]=max(l[0],nums[1])
else:
l[i]=max(l[i-2]+nums[i],l[i-1])
return l[-1]
Java解法如下:
class Solution {
public int rob(int[] num) {
int prevMax = 0;
int currMax = 0;
for (int x : num) {
int temp = currMax;
currMax = Math.max(prevMax + x, currMax);
prevMax = temp;
}
return currMax;
}
}
C++解法如下:
class Solution {
public:
int rob(vector<int>& nums) {
const int n = nums.size();
if (n == 0) return 0;
if (n == 1) return nums[0];
if (n == 2) return max(nums[0], nums[1]);
vector<int> f(n, 0);
f[0] = nums[0];
f[1] = max(nums[0], nums[1]);
for (int i = 2; i < n; ++i)
f[i] = max(f[i-2] + nums[i], f[i-1]);
return f[n-1];
}
};

一道关于动态规划的LeetCode题目,要求计算在不触动相邻房子警报的情况下能抢劫的最大金额。提供Python、Java和C++三种解法。
287

被折叠的 条评论
为什么被折叠?



