LeetCode 动态规划(Dynamic programming)系列题目:LeetCode 动态规划(Dynamic programming)系列题目
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
爬梯子,动态规划即可。
Python代码如下:
class Solution:
def climbStairs(self, n: int) -> int:
t=[1,2]
for i in range(2,n):
t.append(t[i-1]+t[i-2])
return t[n-1]
java解法:
class Solution {
public int climbStairs(int n) {
int []dp=new int[n+1];
if(n==1){
return 1;
}
dp[1]=1;
dp[2]=2;
for (int i=3;i<=n;i++){
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
}
python如果直接使用递归的话,会爆内存,使用缓存可以解决这个问题:
import functools
class Solution:
@functools.lru_cache()
def climbStairs(self, n: int) -> int:
return self.climbStairs(n - 1) + self.climbStairs(n - 2) if n > 2 else 2 if n == 2 else 1
可以直接使用斐波那契公式,Java代码如下:
public class Solution {
public int climbStairs(int n) {
double sqrt5=Math.sqrt(5);
double fibn=Math.pow((1+sqrt5)/2,n+1)-Math.pow((1-sqrt5)/2,n+1);
return (int)(fibn/sqrt5);
}
}

本文探讨了经典的爬楼梯问题,采用动态规划方法求解不同步数到达楼顶的方式数量,并提供了Python及Java实现方案。
734

被折叠的 条评论
为什么被折叠?



