scipy- linalg以及矩阵相关知识学习

本文介绍了scipy.linalg库中的一些核心概念,包括行列式的性质,如行列式的计算和互换行的影响;逆矩阵的概念及其与行列式的关系;特征值的定义与求解,以及矩阵分解的几种方法,如LU、QR和SVD分解。这些内容对于理解和应用线性代数在科学计算中的作用至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.det(A)行列式

行列式在数学中,是由解线性方程组产生的一种算式,是取自不同行不同列的n个元素的乘积的代数和。n阶行列式(定义1)设有n²个数,排成n行n列的表 ,作出表中位于不同行不同列的n个数的乘积,并冠以符号(-1)t,的形式如下的项,其中为自然数1,2,...,n的一个排列,t为这个排列的逆序数。由于这样的排列共有n!个,这n!项的代数和称为n阶行列式

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值