参考链接:https://www.cnblogs.com/heitao/p/6920400.html
物理设备和队列簇与instance的关系
通过VkInstance初始化Vulkan后,我们需要在系统中查找并选择一个支持我们所需功能的显卡。

有不同类型的队列来源于不同的队列簇,每个队列簇只允许部分commands。例如,可以有一个队列簇,只允许处理计算commands或者只允许内存传输commands。
#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/mat4x4.hpp>
#include<vulkan/vulkan.h>
#include <iostream>
#include <stdexcept>
#include <vector>
#include<cstring>
const int WIDTH = 800;
const int HEIGHT = 600;
const std::vector<const char*> validationLayers = {
"VK_LAYER_LUNARG_standard_validation" };
#ifdef NDEBUG
const bool enableValidationLayers = false;
#else
const bool enableValidationLayers = true;
#endif
//代理函数
//该结构体应该传递给vkCreateDebugReportCallbackEXT函数创建VkDebugReportCallbackEXT对象。
//不幸的是,因为这个功能是一个扩展功能,它不会被自动加载。所以必须使用vkGetInstanceProcAddr查找函数地址。
VkResult CreateDebugReportCallbackEXT(VkInstance instance, const VkDebugReportCallbackCreateInfoEXT* pCreateInfo, const
VkAllocationCallbacks* pAllocator, VkDebugReportCallbackEXT* pCallback) {
auto func = (PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr(instance, "vkCreateDebugReportCallbackEXT");
if (func != nullptr)
{
return func(instance, pCreateInfo, pAllocator, pCallback);
}
else
{
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
//通过调用vkDestroyDebugReportCallbackEXT清理VkDebugReportCallbackEXT对象
void DestroyDebugReportCallbackEXT(VkInstance instance, VkDebugReportCallbackEXT callback, const VkAllocationCallbacks* pAllocator)
{
auto func = (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr(instance, "vkDestroyDebugReportCallbackEXT");
if (func != nullptr)
{
func(instance, callback, pAllocator);
}
}
class XFutureWorld
{
public:
XFutureWorld():
window(NULL)
{
}
~XFutureWorld()
{
}
private:
GLFWwindow* window;
VkInstance instance;
//callback 指针
VkDebugReportCallbackEXT callback;
//物理设备
VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
public:
void run()
{
initWindow();
initVulkan();
mainLoop();
cleanUp();
}
private:
void initWindow()
{
//调用glfw 初始化
glfwInit();
glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
//穿件glfw 窗口
window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan window", nullptr, nullptr);
if(window==NULL)
{
std::cout << "窗口创建失败";
}
}
void initVulkan()
{
createInstance();
setupDebugCallback();
pickPhysicalDevice();
}
void mainLoop()
{
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
}
}
void cleanUp()
{
DestroyDebugReportCallbackEXT(instance, callback, nullptr);
vkDestroyInstance(instance, nullptr);
glfwDestroyWindow(window);
glfwTerminate();
}
//创建instance
void createInstance()
{
//检查请求的layer是否可用,如果不可用就抛出异常
if (enableValidationLayers && !checkValidationLayerSupport())
{
throw std::runtime_error("validation layers requested, but not available!");
}
//为该数据结构赋予自定义应用程序的信息。这些数据从技术角度是可选择的,
//但是它可以为驱动程序提供一些有用的信息来优化程序特殊的使用情景,比如驱动程序使用一些图形引擎的特殊行为。
//可选的
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pNext = nullptr;
appInfo.pApplicationName = "Hello Triangle";
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.pEngineName = "No Engine";
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = VK_API_VERSION_1_0;
//Vulkan中的大量信息通过结构体而不是函数参数传递,我们将填充一个结构体以提供足够的信息创建instance。
//必须存在,它需要告知Vulkan驱动程序我们需要使用哪些全局的 extensions 和 validation layers
VkInstanceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pApplicationInfo = &appInfo;
//全局扩展?
//unsigned int glfwExtensionCount = 0;
//const char** glfwExtensions;
////GLFW有一个方便的内置函数,返回它有关的扩展信息
//glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
//createInfo.enabledExtensionCount = glfwExtensionCount;
//createInfo.ppEnabledExtensionNames = glfwExtensions;
//createInfo.enabledLayerCount = 0;
//VkResult result = vkCreateInstance(&createInfo, nullptr, &instance);
auto extensions = getRequiredExtensions();
createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
createInfo.ppEnabledExtensionNames = extensions.data();
if (enableValidationLayers)
{
createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
createInfo.ppEnabledLayerNames = validationLayers.data();
}
else
{
createInfo.enabledLayerCount = 0;
}
if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
throw std::runtime_error("failed to create instance!");
}
}
//将debugcallback赋值给 VkDebugReportCallbackCreateInfoEXT
//然后通过CreateDebugReportCallbackEXT代理函数 创建VkDebugReportCallbackEXT=callback
void setupDebugCallback() {
if (!enableValidationLayers) return;
VkDebugReportCallbackCreateInfoEXT createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT;
createInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT;
createInfo.pfnCallback = debugCallback;
if (CreateDebugReportCallbackEXT(instance, &createInfo, nullptr, &callback) != VK_SUCCESS) {
throw std::runtime_error("failed to set up debug callback!");
}
}
//队列簇索引
struct QueueFamilyIndices
{
int graphicsFamily = -1;
bool isComplete()
{
return graphicsFamily >= 0;
}
};
//选择可用的物理设备
void pickPhysicalDevice()
{
uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);
if (deviceCount == 0)
{
throw std::runtime_error("failed to find GPUs with Vulkan support!");
}
std::vector<VkPhysicalDevice> devices(deviceCount);
vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());
for (const auto& device : devices)
{
if (isDeviceSuitable(device))
{
physicalDevice = device;
break;
}
}
if (physicalDevice == VK_NULL_HANDLE)
{
throw std::runtime_error("failed to find a suitable GPU!");
}
}
/*检查当前设备是否支持对应的操作
可以使用vkGetPhysicalDeviceFeatures查询对纹理压缩,64位浮点数和多视图渲染(VR非常有用)等可选功能的支持:
VkPhysicalDeviceFeatures deviceFeatures;
vkGetPhysicalDeviceFeatures(device, &deviceFeatures);
*/
bool isDeviceSuitable(VkPhysicalDevice device)
{
QueueFamilyIndices indices = findQueueFamilies(device);
return indices.isComplete();
}
/*
* 查找对应设备的队列簇
*/
QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device)
{
QueueFamilyIndices indices;
uint32_t queueFamilyCount = 0;
//获取队列簇的列表函数
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());
int i = 0;
for (const auto& queueFamily : queueFamilies)
{
if (queueFamily.queueCount > 0 && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT)
{
indices.graphicsFamily = i;
}
if (indices.isComplete())
{
break;
}
i++;
}
return indices;
}
//将基于是否开启validation layers返回需要的扩展列表
std::vector<const char*> getRequiredExtensions() {
std::vector<const char*> extensions;
unsigned int glfwExtensionCount = 0;
const char** glfwExtensions;
glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
for (unsigned int i = 0; i < glfwExtensionCount; i++) {
extensions.push_back(glfwExtensions[i]);
}
if (enableValidationLayers) {
extensions.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);
}
return extensions;
}
//我们将添加一个新的函数checkValidationLayerSupport,检测所有请求的layers是否可用。
//首先使用vkEnumerateInstanceLayerProperties函数列出所有可用的层。
bool checkValidationLayerSupport() {
uint32_t layerCount;
vkEnumerateInstanceLayerProperties(&layerCount, nullptr);
std::vector<VkLayerProperties> availableLayers(layerCount);
vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());
for (const char* layerName : validationLayers) {
bool layerFound = false;
for (const auto& layerProperties : availableLayers) {
if (strcmp(layerName, layerProperties.layerName) == 0) {
layerFound = true;
break;
}
}
if (!layerFound) {
return false;
}
}
return true;
}
//debugcallback函数
static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objType, uint64_t obj, size_t location, int32_t code, const char* layerPrefix, const char* msg, void* userData) {
std::cerr << "validation layer: " << msg << std::endl;
return VK_FALSE;
}
};
int main() {
XFutureWorld xFutureWorld;
try
{
xFutureWorld.run();
}
catch (const std::runtime_error& e)
{
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
本文深入探讨Vulkan中的物理设备选择和队列簇概念,阐述如何根据需求从系统中选取合适的显卡,并理解不同类型的队列在处理特定commands时的角色。
1345

被折叠的 条评论
为什么被折叠?



