机器学习结果统计-准确率、召回率F1-score

本文介绍了手写数字识别中的评估指标,包括准确率、召回率和F1-score的计算方式,通过具体例子帮助理解这些指标如何衡量识别系统的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用手写数字识别来作为说明。
准确率: 所有识别为”1”的数据中,正确的比率是多少。 
如识别出来100个结果是“1”, 而只有90个结果正确,有10个实现是非“1”的数据。 所以准确率就为90%

召回率: 所有样本为1的数据中,最后真正识别出1的比率。 
如100个样本”1”, 只识别出了93个是“1”, 其它7个是识别成了其它数据。 所以召回率是93%

F1-score:  是准确率与召回率的综合。 可以认为是平均效果。

详细定义如下:
对于数据测试结果有下面4种情况:
TP: 预测为正, 实现为正
FP: 预测为正, 实现为负
FN: 预测为负,实现为正
TN: 预测为负, 实现为负

准确率: TP/ (TP+FP) 
召回率: TP(TP + FN)
F1-score: 2TP/(2TP + FP + FN)

作者:liu_coding
来源:优快云
原文:https://blog.youkuaiyun.com/net_wolf_007/article/details/51769020
版权声明:本文为博主原创文章,转载请附上博文链接!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值