A Simple Problem with Integers 线段树 区间更新

题目:

You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

输入:

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of AaAa+1, ... , Ab.

输出:

You need to answer all Q commands in order. One answer in a line.

样例输入:

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

样例输出:

4
55
9
15

 

给出n个数,有两种操作,区间更新(对在区间内的每个数都加上相同的数)和区间查询,比起单点更新来多了一个懒惰标记.

标记的含义:

本节点的统计信息已经根据标记更新过了,但是本节点的子节点仍需要进行更新。

即,如果要给一个区间的所有值都加上1,那么,实际上并没有给这个区间的所有值都加上1,而是打个标记,记下来,这个节点所包含的区间需要加1.打上标记后,要根据标记更新本节点的统计信息,比如,如果本节点维护的是区间和,而本节点包含5个数,那么,打上+1的标记之后,要给本节点维护的和+5。这是向下延迟修改,但是向上显示的信息是修改以后的信息,所以查询的时候可以得到正确的结果。有的标记之间会相互影响,所以比较简单的做法是,每递归到一个区间,首先下推标记(若本节点有标记,就下推标记),然后再打上新的标记,这样仍然每个区间操作的复杂度是O(log2(n))。(来自https://www.cnblogs.com/AC-King/p/7789013.html

 

AC代码:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn=100005;
long long  sum[maxn<<2];
long long  a[maxn];
long long  Add[maxn<<2];//懒惰标记
void pushup(int rt)
{
    sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void build(int l,int r,int rt)
{
    if(l==r)
    {
        sum[rt]=(long long)a[l];
        Add[rt]=0;
        return ;
    }
    int m=(l+r)>>1;
    build(l,m,rt<<1);
    build(m+1,r,rt<<1|1);
    pushup(rt);
}
void pushdown(int rt,int ln,int rn)//下推标记
{
    if(Add[rt])
    {
        Add[rt<<1]+=Add[rt];
        Add[rt<<1|1]+=Add[rt];
        sum[rt<<1]+=Add[rt]*ln;
        sum[rt<<1|1]+=Add[rt]*rn;
        Add[rt]=0;
    }
}
void update(int L,int R,int C,int l,int r ,int rt)//区间更新
{
    if(L<=l&&r<=R)
    {
        sum[rt]+=C*(r-l+1);
        Add[rt]+=C;
        return ;
    }
    int m=(l+r)>>1;
    pushdown(rt,m-l+1,r-m);
    if(L<=m) update(L,R,C,l,m,rt<<1);
    if(R>m)update(L,R,C,m+1,r,rt<<1|1);
    pushup(rt);
}
long long  Query(int L,int R,int l,int r,int rt)
{
    if(L<=l&&r<=R)
    {
        return sum[rt];
    }
    int m=(l+r)>>1;
    pushdown(rt,m-l+1,r-m);
    long long ans=0;
    if(L<=m) ans+=Query(L,R,l,m,rt<<1);
    if(R>m)  ans+=Query(L,R,m+1,r,rt<<1|1);
    return ans;
}
int main()
{
    int n,q;
    while(scanf("%d%d",&n,&q)!=EOF)
    {
    for(int i=1;i<=n;i++)//如果用scanf输入注意格式,longlong的不要用%d来输入。。。
        cin>>a[i];
    build(1,n,1);
    char ch;
    for(int i=1;i<=q;i++)
    {
        cin>>ch;
        int a,b,c;
        if(ch=='Q')
        {
            cin>>a>>b;
            long long ans=Query(a,b,1,n,1);
            cout<<ans<<endl;
        }
        else if(ch=='C')
        {
            cin>>a>>b>>c;
            update(a,b,c,1,n,1);
        }
    }
    }
    return 0;
}

 

Here is a C++ program that constructs a max heap with integers and prints it in the rotated form: ```cpp #include <iostream> #include <vector> using namespace std; // function to swap two integers void swap(int& a, int& b) { int temp = a; a = b; b = temp; } // function to heapify the given vector void heapify(vector<int>& arr, int n, int i) { int largest = i; // initialize largest as root int left = 2*i + 1; // left child index int right = 2*i + 2; // right child index // if left child is larger than root if (left < n && arr[left] > arr[largest]) largest = left; // if right child is larger than largest so far if (right < n && arr[right] > arr[largest]) largest = right; // if largest is not root if (largest != i) { // swap the root with largest element swap(arr[i], arr[largest]); // recursively heapify the affected sub-tree heapify(arr, n, largest); } } // function to build max heap void buildMaxHeap(vector<int>& arr, int n) { // start from the last non-leaf node and heapify each node for (int i = n / 2 - 1; i >= 0; i--) heapify(arr, n, i); } // function to print the heap in the rotated form void printRotatedHeap(vector<int>& arr, int n) { int height = log2(n) + 1; // height of the heap int index = 0; // current index in the heap int spaces = pow(2, height - 1) - 1; // number of spaces before the first element of the current level // print each level of the heap in the rotated form for (int i = 0; i < height; i++) { // print the spaces before the first element of the current level for (int j = 0; j < spaces; j++) cout << " "; // print the elements of the current level for (int j = 0; j < pow(2, i) && index < n; j++) { cout << arr[index++] << " "; // print the spaces between elements of the current level for (int k = 0; k < 2 * spaces + 1; k++) cout << " "; } // move to the next line and adjust the number of spaces for the next level cout << endl; spaces /= 2; } } int main() { int n; cout << "Enter the number of elements: "; cin >> n; vector<int> arr(n); cout << "Enter the elements: "; for (int i = 0; i < n; i++) cin >> arr[i]; // build max heap buildMaxHeap(arr, n); // print the heap in the rotated form cout << "Max heap in the rotated form:\n"; printRotatedHeap(arr, n); return 0; } ``` In this program, we first define a `swap` function to swap two integers, and a `heapify` function to heapify the sub-tree rooted at a given index `i` in the given vector `arr`. We then define a `buildMaxHeap` function to build the max heap from the given vector `arr`. Finally, we define a `printRotatedHeap` function to print the max heap in the rotated form. In the `main` function, we first read the number of elements and the elements themselves from the user using `cin`. We then build the max heap using `buildMaxHeap` function, and print the heap in the rotated form using `printRotatedHeap` function. The `printRotatedHeap` function uses the height of the heap to determine the number of levels, and the number of spaces before the first element of each level. It then prints each level of the heap in the rotated form, by printing the elements of the level followed by the spaces between elements.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值