寻找丑数

题目:我们把只包含因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含因子7。习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第1500个丑数。

  分析:寻找一个数是不是满足某种数(质数,水仙数)等,最简单的方法就是遍历,对于任意一个丑数必定可以写成2^m*3^n*5^p,因而对于一个丑数,只含有235因子,也就意味着该数number%2==0number%3==0number%5==0,如果一个数能被2整除,我们就连续除以2;能被3整除,我们就连续除以3;能被5整除,我们就连续除以5;如果最后得到1,则该数是素数,否则是丑数。

  代码如下:

 1 #include
 2 #include<string>
 3 using namespace std;
 4 
 5 //判断一个给定的数number是否是丑数
 6 bool IsUgly(int number)
 7 {
 8     while(number % 2 == 0)
 9     {
10         number /= 2;
11     }
12     while(number % 3 ==0)
13     {
14         number /= 3;
15     }
16     while(number % 5 ==0)
17     {
18         number /= 5;
19     }
20     return(number == 1)?true:false;
21 }
22 
23 //返回从1开始第index个丑数
24 int GetUglyNumber(int index)
25 {
26     if(index <= 0)
27     {
28         return 0;
29     }
30 
31     int number=0;
32     int count=0;
33     while(count < index)
34     {
35         ++number;
36         if(IsUgly(number))
37         {    
38             ++count;
39         }
40         
41     }
42 
43     return number;
44 }
45 
46 int main()
47 {
48     cout<<"Enter A Number:"<<ENDL;
49     int idx=0;
50     cin>>idx;
51     cout<<GETUGLYNUMBER(IDX)<<ENDL;
52     return 0;
53 }

  上面计算中主要的不足在于,逐一遍历,这样对于不是丑数的数的判断会造成大量的时间浪费,如果能够根据已经计算好的丑数,计算出下一个丑数就可以避免这种情况,实现从丑数到丑数的高效算法,根据定义可知,后面的丑数肯定是前面已知丑数乘以235得到的。

  我们假设一个数组中已经有若干丑数,并且这些丑数是按顺序排列的,我们把现有的最大丑数记为max,则下一个丑数肯定是前面丑数乘以235得到的。不妨考虑乘以2得到的情况,我们把数组中的每一个数都乘以2,由于原数组是有序的,因为乘以2后也是有序递增的,这样必然存在一个数M2,它前面的每一个数都是小于等于max,而包括M2在内的后面的数都是大于max的,因为我们还是要保持递增顺序,所以我们取第一个大于max的数M2。同理对于乘以3的情况,可以取第一个大于max的数M3,对于乘以5的情况,可以取第一个大于max的数M5

  最终下一个丑数取:min{M2,M3,M5}即可

  代码如下:

 1 #include
 2 #include<string>
 3 using namespace std;
 4 
 5 //返回三个数中的最小者
 6 int Min(int number1,int number2,int number3)
 7 {
 8     int min = (number1 < number2) ? number1 : number2;
 9     min = (min < number3) ? min : number3;
10     return min;
11 }
12 
13 //返回第index个丑数
14 int GetUglyNumber(int index)
15 {
16     if(index <= 0)
17     {
18         return 0;
19     }
20 
21     int *pUglyNumbers = new int[index];
22     pUglyNumbers[0] = 1;
23     int nextUglyIndex = 1;
24 
25     int *pMultiply2 = pUglyNumbers;
26     int *pMultiply3 = pUglyNumbers;
27     int *pMultiply5 = pUglyNumbers;
28 
29     while(nextUglyIndex < index)
30     {
31         int min = Min(*pMultiply2 * 2,*pMultiply3 * 3,*pMultiply5 * 5);
32         pUglyNumbers[nextUglyIndex] = min;
33 
34         while(*pMultiply2 * 2 <= pUglyNumbers[nextUglyIndex])
35         {
36             ++pMultiply2;
37         }
38         while(*pMultiply3 * 3 <= pUglyNumbers[nextUglyIndex])
39         {
40             ++pMultiply3;
41         }
42         while(*pMultiply5 * 5 <= pUglyNumbers[nextUglyIndex])
43         {
44             ++pMultiply5;
45         }
46 
47         ++nextUglyIndex;
48     }
49 
50     int ugly = pUglyNumbers[nextUglyIndex-1];
51     delete[] pUglyNumbers;
52     return ugly;
53 
54 }
55 
56 int main()
57 {
58     cout<<"Enter A number:"<<ENDL;
59     int number=0;
60     cin>>number;
61     cout<<GETUGLYNUMBER(NUMBER)<<ENDL;
62     return 0;
63 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值