MapReduce之去重
模式描述
这个模式过滤整个数据集,过滤应用的最终输出结果是一个唯一记录的集合
目的
在拥有一系列相思的数据集记录中,找到唯一的集合
适用场景
对于数据集中存在重复值进行去重操作,如果数据中没有重复值的话,则不需要这个模式
使用场景为
- 数据去重
- 抽取重复值
- 规避内连接的数据膨胀
问题描述
给定一个用户评论的列表,得到去重的用户ID集
样例输入
样例文本生成代码如下
import java.io.*;
import java.util.Random;
public class create {
public static String getRandomChar(int length) { //生成随机字符串
char[] chr = {'A', 'B', 'C', ' ','D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'};
Random random = new Random();
StringBuffer buffer = new StringBuffer();
for (int i = 0; i < length; i++) {
buffer.append(chr[random.nextInt(27)]);
}
return buffer.toString();
}
public static void main(String[] args) throws IOException{
String path="input/file.txt";
File file=new File(path);
if(!file.exists()){
file.getParentFile().mkdirs();
}
file.createNewFile();
FileWriter fw=new FileWriter(file,true);
BufferedWriter bw=new BufferedWriter(fw);
for(int i=0;i<1000;i++){
int id=(int)(Math.random()*200+100);
bw.write("< id = "+id+" common = "+getRandomChar(19)+" >\n");
}
bw.flush();
bw.close();;
fw.close();;
}
}
运行结果如下:
mapper阶段任务
mapper阶段任务主要是从输入记录中 得到用户ID,用这个ID作为键并用Null作为值输出到reducer
mapper阶段编码如下
public static class DeduplicationMappper extends Mapper<Object,Text,Text,NullWritable>{
private Text value=new Text();
public void map(Object key,Text value,Context context) throws IOException,InterruptedException{
String line=value.toString();
String id=line.substring(7,10); //7-10为用户ID
context.write(new Text(id), NullWritable.get());
}
}
reducer阶段任务
每个reducer接受到唯一一个键和一系列的Null值,这些键和Null值将被写入文件系统
public static class DeduplicationReducer extends Reducer<Text,NullWritable,Text,NullWritable>{
public void reduce(Text key,Iterable<NullWritable> values,Context context) throws IOException,InterruptedException{
context.write(key,NullWritable.get());
}
}
完整代码如下
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class Deduplication {
public static class DeduplicationMappper extends Mapper<Object,Text,Text,NullWritable>{
private Text value=new Text();
public void map(Object key,Text value,Context context) throws IOException,InterruptedException{
String line=value.toString();
String id=line.substring(7,10); //7-10为用户ID
context.write(new Text(id), NullWritable.get());
}
}
public static class DeduplicationReducer extends Reducer<Text,NullWritable,Text,NullWritable>{
public void reduce(Text key,Iterable<NullWritable> values,Context context) throws IOException,InterruptedException{
context.write(key,NullWritable.get());
}
}
public static void main(String[] args) throws Exception{
FileUtil.deleteDir("output");
Configuration configuration=new Configuration();
String[] otherArgs=new String[]{"input/file.txt","output"};
if(otherArgs.length!=2){
System.err.println("参数错误");
System.exit(2);
}
Job job=new Job(configuration,"Deduplication");
job.setJarByClass(Deduplication.class);
job.setMapperClass(DeduplicationMappper.class);
job.setReducerClass(DeduplicationReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.addInputPath(job,new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job,new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true)?0:1);
}
}
写在最后
数据去重相对来说比较简单,往后可以尝试是哟个combiner优化来加快处理速度